## Demystifying the masonry Eurocode 6 \& 8 (seismic)

## ${ }^{\text {'Course C}}$ ' Module 1 Introduction to the Masonry Eurocode

## ABOUT EUROCODE 6

Eurocode 6, or to use the more formal title, BS EN 1996, consists of four documents:

BS EN 1996-1-1: Rules for reinforced and unreinforced masonry
BS EN 1996-1-2: Structural fire design
BS EN 1996-2: Selection and execution of masonry
BS EN 1996-3: Simplified calculation methods for unreinforced masonry structures

The four documents which make up BS EN 1996 were first published in 2005 and 2006. The supporting MSA National Annexes were first published 2013.

## BS EN 1996-1-1: 2005; Rules for reinforced and \& unreinforced masonry

In developing Eurocode 6 a way had to be found to deal with the wide range of masonry units used across Europe. This range not only includes different material such as clay, concrete and stone, but also a variety of configurations based upon the proportion and direction of any holes or perforations, web thickness etc. This has resulted in four grouping of masonry units.
The characteristic compressive strength of masonry is presented in the form of an equation (3.1). This equation includes the normalised strength of the masonry and the strength of the mortar.

The normalised strength relates the compressive strength of the unit determined by test to a standardised shape and moisture content. The designation of mortars has also changed with the need for a declaration based on strength rather than mix proportions. Thus an M12 mortar may be expected to have a strength of $12 \mathrm{~N} / \mathrm{mm}^{2}$.

## BS EN 1996-1-2:2005 Structural fire design

Fire design is largely in the form of tables. The fire resistance of a loadbearing wall now comprises two values depending upon how highly loaded the wall is and is further enhanced if the wall is plastered.

## BS EN 1996-2:2006 Selection and execution of masonry

Part 2 of Eurocode 6 contains limited information of a very general nature on materials and execution. The projected exposure conditions of new masonry play an important part in their durability. Water ingress impacts on the strength of the material and must therefore be considered during the design. Five new exposure classifications MX1 to MX5 are defined.

## BS EN 1996-3:2006 Simplified calculation methods for

 unreinforced masonry structuresPart 3 deals with simplified calculation methods for unreinforced masonry but probably does not produce more cost effective outcomes.

## BS EN 1998-1 :2004 E Ch. 9 SPECIFIC RULES FOR MASONRY BUILDINGS

Includes for seismic requirement wrt to min strength of block \& mortar.
Thickness of block \& effective lengths are reduced further. Rules for simple masonry buildings also given.

## Fig 1 - MASONRY AS A COMPOSITE MATERIAL


$\qquad$ masonry strength ( $f_{b}$ )
mortar strength ( $\mathrm{f}_{\mathrm{m}}$ )
$\mathrm{P}_{\mathrm{u}}$ as a combination of masonry unit \& mortor strengths

$$
\mathrm{f}_{\mathrm{k}}=0.45 \mathrm{f}_{\mathrm{b}}^{0.7} \cdot \mathrm{f}_{\mathrm{m}}{ }^{0.3} \text { (ECG) }
$$

Where $f_{b}$ is the normalised mean compressive strength of the units in $\mathrm{N} / \mathrm{mm}^{2}$.

* $\mathrm{f}_{\mathrm{m}}$ is the compressive strength of mortar in $\mathrm{N} / \mathrm{mm}^{2}$ *f $\mathrm{f}_{\mathrm{b}}=>1.2 \mathrm{X}$ compressive strength $(\mathrm{dry}) \mathrm{X}$ shape factor


## PROPERTIES OF MORTAR

Mortar is the glue that binds masonry together and is typically 10 mm thick, although it is possible to have mortar as thin as 0.5 mm . Originally it was a clay based mud that eventually became a lime and sand based mixture that remained in use in some form until the early 20th century, when cement based mortar became prevalent.

The change to cement based mortars occurred because they are less weather dependent during construction than lime based mortars. They also gain early strength rapidly, speeding up the building process. Cement based mortars do not self-heal as well as lime based ones, which means that greater attention needs to be paid to movement. Additionally, cement based mortars will force any moisture in the wall to evaporate from the face of the brick, and not from the mortar, which can lead to damage of the brick surface.

When working on historic structures, it is important to ensure that appropriate mortar is used, with probably lime-based mortars required to be specified.

## Table 1 - Acceptable assumed equivalent mixes for prescribed masonry mortars

| Compressive Strength Class | Prescribed mortars (proportion of materials by volume) (See Note) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Cement: Lime : sand with or without air entrainment | Cement : Sand with or without air entrainment | Masonry Cement (inorganic filler) : sand | Masonry cement (lime) : sand |
| M2 | 1:2:8-9 | 1:7-8 | $1: 5.5-6.5$ | 1:4.5 |
| M4 | 1:1:5-6 | 1:5-6 | 1:4-5 | 1:3,5-4 |
| M6 | $1: 0,5: 4-4,5$ | 1:3-4 | $1: 2,5-3,5$ | 1:3 |
| M12 | 1:0-0,25:3 | 1:3 | not suitable | not suitable |
| Note: The number following the $M$ is the compressive strength for the class at 28 days in $\mathrm{N} / \mathrm{mm} 2$ |  |  |  |  |

BS EN 1996-1-1 Design of Masonry Structures divides mortar into four classes: M2, M4, M6 and M12. The lower the class number, the weaker it is, which is inversely proportionate to its flexibility. Class M12 mortar has a compressive strength of $12 \mathrm{~N} / \mathrm{mm} 2$ and is quite brittle when compared to Class M2 mortar, which has a compressive strength of $2 \mathrm{~N} / \mathrm{mm} 2$, yet is the most flexible of the cement based mortars. The most commonly used mortar is Class M4 as it offers sufficient flexibility without sacrificing too much in the way of compressive strength (4 N/mm2).

## Table 2 - strengths of Maltese Mortars from tests carried out by Debattista (1985)

| MORTAR CONSTITUENTS | PROPORTION BY VOLUME | $\begin{aligned} & \text { COMPRESSIVE } \\ & \text { STRENGTH } \\ & \text { 28DAYS-N/mm² } \end{aligned}$ | $\begin{aligned} & \text { FLEXURAL } \\ & \text { STRENGTH } \end{aligned}$ | W/C |
| :---: | :---: | :---: | :---: | :---: |
| Cement. Carolline Sand, Fine Globigerina sand | 1:2:10 | 1.86 (M2) | 0.58 | 3.5 |
| Cement, Carolline Sand, Fine Globigerina Sand | 1:2:6 | 4.48 (M4) | 1.30 | 2.0 |
| Cement, carolline Sand, Coarse Globigerina sand | 1:3:12 | 0.92 | 0.20 | 4.4 |
| Cement, White lime, carolline Sand, course globigerina sand | 1:1.14:2:4 | 1.43 | 0.29 | 2.5 |
| White lime, fine globigerina sand | 1:2 | 1.32 | 0.56 | 2.1 |

## MASONRY MOVEMENT JOINTS

Joints should be provided to minimize the effects of movement cause by drying shrinkage, moisture expansion, temperature variations, creep and settlement.

To be noted that from Table 3, the low movement characteristics of limestone. Compared with most other materials used in the structure of a building, masonry is relatively stiff and brittle.

It does not readily absorb distortions arising from movement or displacement nor readily redistribute high localized stresses.

# Table 3 - Guide to the Properties 

| Properties | Dense concrete blockwork | Lightweight concrete <br> blockwork | Aerated concrete blockwork | Globigerin a Limestone | Lower Coralline Limestone |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Weight (kN/m ${ }^{\mathbf{3}}$ ) | 15-21 | 7-16 | 4-9 | 17 | 21 |
| Compressive strength (N/mm ${ }^{\mathbf{2}}$ ) | 7-35 | 3.5-10.5 | 2.8-7 | 15-37.5 | 35-75 |
| Flexural strength ( $\mathrm{N} / \mathrm{mm}^{2}$ ) |  |  |  | 1.1-4.7 |  |
| Elastic modulus (kN/mm ${ }^{2}$ ) | $\begin{gathered} 10-25 \text { or } \\ 300 f_{k}^{*} \end{gathered}$ | 4-16 | 1.7-8 | 17 |  |
| Reversible moisture movement (\%) | $\begin{aligned} & \hline 0.02- \\ & 0.06(-) \end{aligned}$ | 0.03-0.06 (-) | $\begin{gathered} 0.02-0.03 \\ (-) \end{gathered}$ | 0.01 (+) |  |
| Initial moisture expansion (+) or drying shrinkage (-) (\%) | $\begin{gathered} 0.02-0.06 \\ (-) \end{gathered}$ | 0.05-0.06(-) | $\begin{gathered} 0.05-0.09 \\ (-) \end{gathered}$ | 0.01 |  |
| Coefficient of thermal expansion $\left(\mathbf{X 1 0}{ }^{-6} /{ }^{\circ} \mathrm{C}\right.$ ) | 6-14 | 7-12 | 8 | 4 |  |
| Long-term natural water absorption (\%) |  |  |  | 15.6 | 6.7 |
| ```Thermal conductivity at \(5 \%\) moisture content \(\left(\mathbf{W} / \mathbf{m}^{\circ} \mathbf{C}\right)\)``` | 0.6-1.3 | 0.20-0.44 | 0.10-0.27 | 1.3 |  |

# Table 4 - DIFFERENT MATERIAL RATES OF THERMAL \& MOISTURE 

| MATERIAL | COEFFICIENT OF THERMAL EXPANSION $/{ }^{\mathbf{0}} \mathrm{C} \mathrm{X} \mathbf{1 0}^{-6}$ | APPROXIMATE DRYING SHRINKAGE - \% IN AIR AT 65\% RH |
| :---: | :---: | :---: |
| Wood | 3.6 to 5.4 | 2.0 to 40 (across the grain) 0.1 (along the grain) |
| Glass | 9.0 |  |
| Steel | 10.8 | None |
| Concrete | 10.8 | 0.3 to 0.12 |
| Plastic | 17.0 | W. |
| Copper | 17.2 | None |
| Aluminium | 23.0 | None |
| Limestone | 40 | 0.1 |
| Mortar | 11.13 | 0.04 -0.1 |

Where different materials are connected together or connected to parts of a building not subject to external changes of temperature, care has to be taken in design to accommodate the expansion and contraction of one relative to another, limit and control cracking. Many constructional materials shrink on drying and expand again on wetting, this process being partially or wholly reversible.

## MOVEMENT IN FRANKA

To determine the movement likely to take place it is necessary to combine the individual effective movement due to thermal moisture \& other effects.

The effective thermal \& moisture effects are not directly additive
The moisture expansion of limestone is given at $+0.01 \%$
The coefficient of thermal expansion is given at $4 /{ }^{\circ} \mathrm{C} \mathrm{X} 10^{-6}$
Considering a 1.0 mn length for $\Delta \mathrm{t}=20^{\circ} \mathrm{C}$
Increase in length (mm)
1000 X 4 X $10^{-6}$ X $20=0.08 \mathrm{~mm}$
representing a $0.008 \%$ increase in length
Total temperature + effective moisture movement
$=0.008 \%+0.01 \% / 2=0.0 .13 \%$

Assuming modern filler can compress to $50 \%$ for a 10 mm movement,
a joint width of 20 mm is required at a spacing given by $10 \mathrm{~mm} / 0.13 \mathrm{mn}$
$=75 \mathrm{~m}$ spacing

## MOVEMENT IN CONCRETE B/W

This 75 m spacing is to be compared to the $6 \mathrm{~m}-10 \mathrm{~mm}$ joint spacing specified for concrete hollow blockwork due to its high irreversible drying shrinkage.
For reinforced concrete hollow blockwork this joint spacing may be increased to
12 m for $\mathrm{an} \mathrm{L} / \mathrm{h}=2$
18 m for $\mathrm{an} \mathrm{L} / \mathrm{h}=4$
Non-loaded unrestrained parapet walls should be provided with twice the amount of movement provision.

Table 5 -Maximum horizontal distance $I_{m}$ between vertical movement joints in external unreinforced non-load bearing walls ${ }^{(1)}$

| Type of Masonry | $I_{m} \mathrm{~m}$ |
| :--- | :--- |
| Clay masonry | 12 |
| Calcium silicate masonry | 6 |
| Aggregate concrete and manufactured stone masonry | 6 |
| Autoclaved aerated concrete masonry | $20^{(2)}$ |
| Natural Stone masonry | 6 |
| Note 1: The value for masonry walls containing bed joint reinforcement conforming to EN $845-$ <br> 3 may be increased. Guidance may be obtained from the manufactures of bed joint <br> reinforcement. <br> Note 2: When using this figure, movement joints should be located at not more than 8 m from <br> the corner. |  |

# Sizes of vertical chases and recesses in masonry, allowed without calculation Table 6 

|  | Chases and recesses formed after <br> construction of masonry |  | Chases and recesses formed during construction <br> of masonry |  |
| :---: | :---: | :---: | :---: | :---: |
|  | max depth | max width | minimum wall thickness <br> remaining <br> mm | max width |

NOTE 1 The maximum depth of the recess or chase should include the depth of any hole reached when forming the recess or chase.

NOTE 2 Vertical chases which do not extend more than one third of the storey height above floor level may have a depth up to 80 mm and a width up to 120 mm , if the thickness of the wall is 225 mm or more.

NOTE 3 The horizontal distance between adjacent chases or between a chase and a recess or an opening should not be less than 225 mm .

NOTE 4 The horizontal distance between any two adjacent recesses, whether they occur on the same side or on opposite sides of the wall, or between a recess and an opening, should not be less than twice the width of the wider of the two recesses.

NOTE 5 The camulative width of vertical chases and recesses should not exceed 0,13 times the length of the wall.

## Sizes of horizontal and inclined chases in masonry, allowed without calculation - Table 7

| Thickness of wall <br> mm | Maximum depth |  |
| :---: | :---: | :---: |
|  | Unimited length | Length $\leq 1250 \mathrm{~mm}$ |
| $85-115$ | 0 | 0 |
| $116-175$ | 0 | 15 |
| $176-225$ | 10 | 20 |
| $226-300$ | 15 | 25 |
| over 300 | 20 | 30 |

NOTE 1 The maximum depth of the chase should include the depth of any hole reached when forming the chase.

NOTE 2 The horizontal distance between the end of a chase and an opening should not be less than 500 mm .

NOTE 3 The horizontal distance between adjacent chases of limited length, whether they occur on the same side or on opposite sides of the wall, should be not less than twice the length of the longest chase.

NOTE 4 In walls of thickness greater than 175 mm , the permitted depth of the chase may be increased by 10 mm if the chase is machine cut accurately to the required depth. If machine cuts are used, chases up to 10 mm deep may be cut in both sides of walls of thickness not less than 225 mm .

NOTE 5 The width of chase should not exceed half the residual thickness of the wall.

## FIRE RESISTANCE OF FRANKA

Building stones have low thermal diffusivity. Hence temperatures rise, within body of wall is correspondingly low. The high temperature would not exist within a moderate depth below surface. A steep temperature gradient exists between the outer and inner parts causing splitting. Splitting is more pronounced in hollow blocks.

For temperatures up to $400^{\circ} \mathrm{C}$ pink or reddish brown coloration occurs for Franka containing $\mathrm{Fe}_{2} \mathrm{O}_{3}$. Free of $\mathrm{Fe}_{2}$ $\mathrm{O}_{3}$, a greyish colour develops with the depth of coloration rarely exceeding 20 mm .

Around $600^{\circ} \mathrm{C}$, colour disappears \& calcinations occur with depth rarely exceeding 1 cm . Calcinated limestone has a dull earthly appearance.

# FURTHER TO FIRE RESISTANCE OF FRANKA 

No significant reduction in crushing strength occurs up to $400 / 450^{\circ} \mathrm{C}$.

At $600^{\circ} \mathrm{C}$ the masonry retains $60 \%$ of original strength thus it is expected safe to re-build on existing walls except those stressed in tension.

Moulded glass soften or flow at $700^{\circ} \mathrm{C} / 800^{\circ} \mathrm{C}$ cast iron forms drops or sharp edges are rounded at $1,100^{\circ} \mathrm{C} / 1,200^{\circ} \mathrm{C}, 650^{\circ}$ for aluminium $1,000^{\circ}$ for bronze.

Table 8 Manufactured stoue masoury mimimum thichness of separating mon-loadbearing separatiug walls (Criteria EI) for fire resistance classifications

| Row <br> number | material properties <br> normalized strength <br> [ $\mathrm{N} / \mathrm{mm}^{2}$ '] <br> gross density $\rho\left[\mathrm{kg}\left[\mathrm{m}^{\prime}\right]\right.$ | Minimum wall thichness (nmi) $t_{\text {p }}$ for fire resistance classification EI for time (minutes) $t_{\text {a }}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 30 | 60 | 90 | 120 | 180 | 240 |
| 1 | Group 1 mits |  |  |  |  |  |  |
| 1.1 | Mortar. general purpose, thin layer, lightweight$1200 \leq p \leq 2200$ |  |  |  |  |  |  |
| $\begin{aligned} & 1.1 .1 \\ & 1.1 .2 \end{aligned}$ |  | $\begin{gathered} 50 \\ (50) \end{gathered}$ | $\begin{aligned} & 70 / 90 \\ & (50 / 70) \end{aligned}$ | $\begin{gathered} 90 \\ 90 \end{gathered}$ | $\begin{aligned} & 90 / 100 \\ & (70 / 90) \end{aligned}$ | $\begin{gathered} 100 \\ 901000 \end{gathered}$ | $\begin{gathered} 100170 \\ (100140) \end{gathered}$ |

Table 9 Manufactured stone masoury minimum thiclmess of separating loadbearing single leaf malls (Criteria REI) for fire resistance classifications

| IOW <br> number | material properties nomalizel stengh [ $\mathrm{N} / \mathrm{mm}^{\mathrm{n}}$ ] <br> gross dansity $\rho$ [kg $\left.\operatorname{man}^{3}\right]$ | Minimum wall thichness (mmi) $t_{\text {f }}$ for fire resistance clasification REI for time (minutes) $t_{\text {a }}$, |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 30 | 60 | 90 | 120 | 180 | 240 |
| 1 | Group 1 mits |  |  |  |  |  |  |
| 1.2 | Mortar. general propose, thin layer, lightweight$1200 \leq p \leq 2200$ |  |  |  |  |  |  |
| $\begin{aligned} & 1.2 .1 \\ & 1.2 .2 \end{aligned}$ | $a \leq 1,0$ | $\begin{gathered} 90 / 170 \\ (90 / 140) \\ \hline \end{gathered}$ | $\begin{aligned} & 90170 \\ & 90 / 140 \end{aligned}$ | $\begin{gathered} 90 / 170 \\ (90 / 140) \end{gathered}$ | $\begin{array}{r} 100190 \\ (90170) \\ \hline \end{array}$ | $\begin{gathered} 140 / 240 \\ (100 / 190) \end{gathered}$ | $\begin{gathered} 150300 \\ (100 / 240) \end{gathered}$ |
| $\begin{aligned} & 1.2 .3 \\ & 1.2 .4 \\ & \hline \end{aligned}$ | $a \leq 0,6$ | $\begin{array}{r} 70 / 140 \\ (60 / 100) \\ \hline \end{array}$ | $\begin{gathered} 70 / 140 \\ (70 / 100) \end{gathered}$ | $\begin{aligned} & 90 / 170 \\ & (70 / 100) \end{aligned}$ | $\begin{gathered} 901170 \\ (70140) \end{gathered}$ | $\begin{aligned} & 100 / 190 \\ & (90 / 170) \end{aligned}$ | $\begin{gathered} 140 / 240 \\ (100190) \end{gathered}$ |

## Fire resistance classifications

In the tables the thickness referred to is that of the masonry itself, excluding finishes, if any. The first row of pairs of rows defines the resistance for walls without a suitable surface finish (see 4.2(1)). Values in brackets ( ) in the second row of pairs of rows are for walls having an applied finish in accordance with 4.2(1), of minimum thickness 10 mm on both faces of a single leaf wall, or on the fire-exposed face of a cavity wall.[deleted rendering or plaster again, ref to 4.2(1) is enough]

Masonry made with units having high precision dimensions and having unfilled vertical joints more than 2 mm , but less than 5 mm , wide, may be assessed using the tables providing render or plaster of at least 1 mm thickness is used on at least one side. In such cases, the fire resistance periods are those given for walls without a layer of surface finish. For walls having vertical joints with a thickness less than or equal to 2 mm , no additional finish is required in order to be able to use the Tables appropriate to walls with no applied finish.

## Demystifying the masonry Eurocode 6 \& 8 (seismic)

## ${ }^{`}$ Course C' Module 2 Design of Vertical Wall Elements

# Classification of masonry units \& workmanship class, most applicable in Malta 

2 levels of attestation of conformity are recognised: Category I and Category II.

- Category I masonry units, which have a declared compressive strength with a probability of failure to reach it not exceeding 5\%.
- Category II masonry units, which are not intended to comply with the level of confidence of Category I units, relates to Malta.

5 classes of execution control are also recognised, Class 2 applicable to Malta.

## Applicable Material Partial Safety Factors - Table 1



## Failure mode of masonry

In masonry under compressive load the transversal strain of the mortar in the bed joints is normally larger than that of the units.


This causes transversal tensile stresses in the units.

This leads to the effect that the compressive strength of masonry is limited by the tensile strength of the units.


When the compressive load is increased up to the bearing capacity, the units will crack normal to the mentioned tensile stresses.

## So the compressive strength of masonry mainly depends on:

- the tensile strength of the masonry units (units with holes and also grip slots are disadvantageous in this regard),
- the compressive strength of mortar (as a higher strength of mortar reduces the transverse strain).

Note:
Otherwise certain deformability of mortar is advantageous, so that masonry may accommodate induced deformations, for example resulting from unequal settlements, without cracking.

## Additional parameters influencing on the strength of masonry:

- Masonry bond:

Walls, in which every unit
goes through the whole wall thickness are stronger than walls which are built up of several units, laying side by side over the wall thickness.
In the latter case a sufficient number of through units is very important.

- Thickness of bed joints:

Too thick bed joints are unfavourable.
Therefore their thickness is limited (normally from 8 mm to 15 mm ).

- Number of bed joints over the height of the wall:

Blocks are better than smaller units in this respect.

## Characteristic compressive strength of masonry other than shell bedded - Figure 1

Alternative i: based on test acc. EN 1052-1 by project / database

- in table format or
- in formula format: $f_{\mathrm{k}}=K f_{\mathrm{b}}^{\alpha} f_{\mathrm{m}}^{\beta}$ with $\mathrm{K}, \alpha$ and $\beta$ to be given in the NA
- Alternative ii: formulae as given:

$$
\begin{array}{ll}
f_{\mathrm{k}}=K \cdot f_{\mathrm{b}}^{0,7} \cdot f_{\mathrm{m}}^{0,3} & \text { (3.2) masonry with general purpose mortar } \\
f_{\mathrm{k}}=K f_{\mathrm{b}}^{0,85} & \text { (3.3) thin bed masonry with CS and AAC units } \\
f_{\mathrm{k}}=K f_{\mathrm{b}}^{0,7} & \text { (3.4) thin bed with group } 2 \text { and } 3 \text { clay blocs }
\end{array}
$$

$f_{b}$ is not taken to be greater than $75 \mathrm{~N} / \mathrm{mm}^{2}$ when units are laid in general purpose mortar $f_{m}$ is not taken to be greater than $20 \mathrm{~N} / \mathrm{mm}^{2}$ nor greater than $2 f_{b}$ when units are laid in general purpose mortar;

## Table 2 - Values of $K$ for use with

 general purpose, thin layer and lightweight mortars| Masonry Unit |  | General purpose mortar | $\begin{gathered} \hline \text { Thin layer } \\ \text { mortar } \\ \text { (bed joint } \\ \geq 0,5 \mathrm{~mm} \text { and } \\ \leq 3 \mathrm{~mm} \text { ) } \\ \hline \end{gathered}$ | Lightweight mortar of density |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{array}{r} \quad 600 \leq \rho_{\mathrm{d}} \\ \leq 800 \mathrm{~kg} / \mathrm{m}^{3} \end{array}$ | $\begin{aligned} & 800<\rho_{\mathrm{d}} \\ \leq & 1300 \mathrm{~kg} / \mathrm{m}^{3} \end{aligned}$ |
| Clay | Group 1 | 0,55 | 0,75 | 0,30 | 0,40 |
|  | Group 2 | 0,45 | 0,70 | 0,25 | 0,30 |
|  | Group 3 | 0,35 | 0,50 | 0,20 | 0,25 |
|  | Group 4 | 0,35 | 0,35 | 0,20 | 0,25 |
| Calcium Silicate | Group 1 | 0,55 | 0,80 | $\ddagger$ | $\ddagger$ |
|  | Group 2 | 0,45 | 0,65 | $\ddagger$ | $\ddagger$ |
| Aggregate Concrete | Group 1 | 0,55 | 0,80 | 0,45 | 0,45 |
|  | Group 2 | 0,45 | 0,65 | 0,45 | 0,45 |
|  | Group 3 | 0,40 | 0,50 | $\ddagger$ | $\ddagger$ |
|  | Group 4 | 0,35 | $\ddagger$ | $\ddagger$ | $\ddagger$ |
| Autoclaved Aerated Concrete | Group 1 | 0,55 | 0,80 | 0,45 | 0,45 |
| Manufactured Stone | Group 1 | 0,45 | 0,75 | $\ddagger$ | $\ddagger$ |
| Dimensioned Natural Stone | Group 1 | 0,45 | $\ddagger$ | $\ddagger$ | $\ddagger$ |
| $\ddagger$ Combination of mortai/unit not normally used, so no value given. |  |  |  |  |  |

# Definition of Declared \& Normalised Compressive Strength $\mathbf{f}_{\mathrm{b}}$ 

- Declared values - The mean value of a test sample must not be less than the declared value
- E.g. declared compressive strength for masonry units
- Mean compressive strength of 10 units must be greater than the declared value
- Any individual result must not be less than $80 \%$ of the declared value
- Normalised mean compressive strength - Conditioning regimes
- Air dry and 6\% $m_{c}$ - used as reference method
- Oven dry $\quad \mathrm{m}_{\mathrm{c}}-\mathrm{X} 0.8$
- Immersion in water $\mathrm{m}_{\mathrm{c}}-\mathrm{X} 1.2$
- Shape factor $\lambda$
$\mathrm{f}_{\mathrm{b}}=\mathrm{m}_{\mathrm{c}} \mathrm{X}$ (manufactured declared compressive strength) $\mathrm{X} \lambda$.


## Table 3 - Normalised strength

## DESIGN NOTE 5:Shape factors for Normalised Strength

## Shape Factors for Normalised Strength

With mm (Historically called Thlckness for some UK masonry units)

| Height <br> mm | 50 | 75 | 90 | 100 | 115 | 125 | 140 | 150 | 190 | 200 | 215 | 225 | $\geq 250$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 40 | 0.80 | 0.75 | 0.72 | 0.70 |  |  |  |  |  |  |  |  |  |
| 50 | 0.85 | 0.80 | 0.77 | 0.75 | 0.74 | 0.73 | 0.71 | 0.70 |  |  |  |  |  |
| 65 | 0.95 | 0.90 | 0.87 | 0.85 | 0.82 | 0.80 | 0.77 | 0.75 | 0.71 | 0.70 | 0.69 | 0.68 | 0.65 |
| 100 | 1.15 | 1.08 | 1.03 | 1.00 | 0.97 | 0.95 | 0.92 | 0.90 | 0.82 | 0.80 | 0.79 | 0.78 | 0.75 |
| 140 | 1.27 | 1.22 | 1.18 | 1.16 | 1.13 | 1.11 | 1.08 | 1.06 | 0.98 | 0.96 | 0.95 | 0.94 | 0.91 |
| 150 | 1.30 | 1.25 | 1.22 | 1.20 | 1.17 | 1.15 | 1.12 | 1.10 | 1.02 | 1.00 | 0.99 | 0.98 | 0.95 |
| 190 | 1.42 | 1.37 | 1.34 | 1.32 | 1.29 | 1.27 | 1.24 | 1.22 | 1.14 | 1.12 | 1.11 | 1.10 | 1.07 |
| 200 | 1.45 | 1.40 | 1.37 | 1.35 | 1.32 | 1.30 | 1.27 | 1.25 | 1.17 | 1.15 | 1.14 | 1.13 | 1.10 |
| 215 | 1.48 | 1.43 | 1.40 | 1.38 | 1.35 | 1.33 | 1.30 | 1.28 | 1.20 | 1.18 | 1.16 | 1.15 | 1.12 |
| $\geq 250$ | 1.55 | 1.50 | 1.47 | 1.45 | 1.42 | 1.40 | 1.37 | 1.35 | 1.27 | 1.25 | 1.22 | 1.20 | 1.15 |

Linear interpoialion betveen raues is pemited.
 content of he units attest

## Compression Crushing Strengths of Local Masonry Units

Cachia (1985) noted in testing franka crushing values of:
Dry testing $\quad 15.0-37.84 \mathrm{~N} / \mathrm{mm}^{2}$.
Saturated testing: $7.95-22.0 \mathrm{~N} / \mathrm{mm}^{2}$

The stress in the N -direction (ie normal to the stratification) is generally higher than in the P-direction.
On average the strength in the P-direction is $8 \%$ less.
This value is lower in the fully saturated state than in the dry state, Loss of strength is on average 39\%.
In general the compressive strength decreases as one goes down in the quarry.

Table 4 - Blockwork Characteristic Strength

## $\mathrm{f}_{\mathrm{k}}$ Data

| Blockwork type mm | Average <br> Characteristic <br> Strength N/mm 2 | Average Coefficient of variation \% | Period | Best <br> Year \% | Worst Year \% |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $115$ | $58$ | $1823$ | $1091199$ | $1992+\%$ | $19 \varphi,+\%$ |
| $150$ |  | $1625$ | $10911026$ | $1980, \%$ | $2 \theta+\%$ |
| $225 \operatorname{sing} 4$ | $02$ | $1+1+2+2+2+2+2+2+2$ | $1921.1996$ | $\text { } 9,4+\%$ | $16,4 \%$ |
| $225 \text { coboblu }$ | $86$ | $20 .$ | $1002,19 \% 6$ | $\sqrt{9} 9, \%$ | $14,86 \%$ |

Source: Grech (1997)
An important concept to introduce is shell bedding, with mortar laid on the 2 outer edges only. The design strength should be reduced by the ratio of the bedded area to the gross area.

## Characteristic compressive strength of shell bedded masonry

(1) The characteristic compressive strength of shell bedded masonry, made with Group 1 and Group 4 masonry units, may also be obtained from 3.6.1.2, provided that: - the width of each strip of mortar is 30 mm or greater;

- the thickness of the masonry is equal to the width or length of the masonry units, so that there is no longitudinal mortar joint through all or part of the length of the wall;
- the ratio $\mathrm{g} / \mathrm{t}$ is not less than 0,4;
- $K$ is taken from 3.6.1.2 when $\mathrm{g} / \mathrm{t}=1,0$ or K is taken as half of those values when $\mathrm{g} / \mathrm{t}=$ 0,4 , with intermediate values obtained by linear interpolation.
$g$ is the total of the widths of the mortar strips;
$t$ is the thickness of the wall.
(2) The characteristic compressive strength of shell bedded masonry made with Group 2 and Group 3 masonry units, may be obtained from 3.6.1.2, provided that the normalised mean compressive strength of the units, $f_{b}$, used in the equation is that obtained from tests on units tested in accordance with EN 772-1 for shell bedded units.


## Properties of concrete infill

(1)P The characteristic compressive strength and shear strength of concrete infill shall be determined from tests on concrete specimens.

NOTE: test results may be obtained from tests carried out for the project, or be available from a database.
(2) Where test data are not available the characteristic compressive strength, $f_{c k}$, and the characteristic shear strength, $f_{c v k}$, of concrete infill may be taken from table 4 below:-

Table 5. - Characteristic strengths of concrete infill

| Strength class of concrete | $\mathrm{C} 12 / 15$ | $\mathrm{C} 16 / 20$ | $\mathrm{C} 20 / 25$ | $\mathrm{C} 25 / 30$, or <br> stronger |
| :---: | :---: | :---: | :---: | :---: |
| $f_{\mathrm{ck}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ | 12 | 16 | 20 | 25 |
| $f_{\text {cvk }}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ | 0,27 | 0,33 | 0,39 | 0,45 |

# Where to go - Load table for EC6? - Table 6 

| Material | Crushing strength N/mm2 | $\begin{array}{\|l} \text { Mortar type IV } \\ \text { KN/m } \end{array}$ | Mortar type <br> III <br> KN/m | Mortar type <br> II <br> $K N / m$ |
| :---: | :---: | :---: | :---: | :---: |
| 23. franka | 20 | 53\% | 602 |  |
| 23 9\%\%\% | 75 |  |  | 1640 |
| 180 franka | 20 | 493 | 51 |  |
| 150 framka | 20 | 409 | 522 |  |
| 225 blocl dobblu | 85 | 283 | 39 |  |
| 225 bloch singlu | \# | 268 | 29\% |  |
| 150 block | \# | 21 | 246 |  |
| 115 block | 5 | 163 | 185 |  |
| 225 nfilled bloch | U | 4 | 52 | 51 |
| 23 infiled bloch uith 12 mm bar at 225 centres | 1V. |  |  | 941/2. |
| 225 inflled bloch uith 20 min har at 225 centres | $15$ |  | $\pi / \pi / \pi / \pi /$ |  |

The above table demonstrates the low load bearing capacity of concrete b/w of crushing strength $7 \mathrm{~N} / \mathrm{mm}^{2}$, as being approximately $50 \%$ for equivalent thick franka of crushing strength $20 \mathrm{~N} / \mathrm{mm}^{2}$. (Source - Structural Integrity Handbook BICC 2001)

## Wall Geometry

- Effective height, $\mathrm{h}_{\mathrm{ef}}$
$-\mathrm{h}_{\mathrm{ef}}=\rho_{\mathrm{n}} \mathrm{h}$, $\rho_{\mathrm{n}}=0.75$ or 1.0
depending on top and bottom restraints, further reductions are permitted for vertical restraints.
- Effective thickness, $\mathrm{t}_{\text {ef }}$
$-\mathrm{t}_{\mathrm{ef}}=\left(\mathrm{t}_{1}{ }^{3}+\mathrm{t}_{2}{ }^{3}\right)^{1 / 3}, \mathrm{t}_{1} \& \mathrm{t}_{2}$ are actual thickness of each leaf
- Slenderness ratio

$$
-\mathrm{h}_{\mathrm{ef}} / \mathrm{t}_{\mathrm{ef}} \leq 27(\mathrm{EC} 6) \leq 15(\mathrm{EC} 8)
$$

## Stiffness coefficient

When a wall is stiffened by piers the effective thickness is enhanced by using the following equation:
$t_{\mathrm{ef}}=r_{\mathrm{tt}}$
where
$t_{\mathrm{ef}}=$ effective thickness
$\mathrm{r}_{\mathrm{tt}}=$ coefficient obtained from Table 7 Below
$t=$ thickness of the wall

| Stiffness coefficient, $r_{t t y}$ <br> for walls stiffened by piers <br> Ratio of pier spacing <br> (centre to centre) <br> to pier width |  |  |  |
| :--- | :--- | :--- | :--- |
| Ratio of pier thickness to actual |  |  |  |
| thickness of wall to which it is bonded |  |  |  |
| 6 | 1 | 2 | 3 |
| 10 | 1.0 | 1.4 | 2.0 |
| 20 | 1.0 | 1.2 | 1.4 |
| Note: Linear interpolation is permitted in this table |  |  |  |

## Eccentricity - Figure 2

- Assessed at top, middle and bottom of wall using a sub-frame analysis



## Eccentricity Continued - Figure 3

At top or bottom of wall
$-e_{i}=\frac{M_{i d}}{N_{i d}}+e_{\text {he }}+e_{\text {init }} \geq 0.05 t$
$-\mathrm{M}_{\mathrm{id}}=$ design moment at top or bottom of wall

- $\mathrm{N}_{\mathrm{id}}=$ design vertical load at top or bottom of wall
$-e_{\text {he }}=$ load related eccentricity at top or bottom of wall from lateral loads
$-\mathrm{e}_{\text {init }}=\mathrm{h}_{\mathrm{ef}} / 450$ when $\mathrm{SR} \leq 27$


## Eccentricity Continued - Figure 4

## Middle of wall

$-e_{m k}=e_{m}+e_{k} \geq 0.05 t$ $-e_{m}=\frac{M_{m d}}{N_{m d}}+e_{h m} \pm e_{\text {init }}$ $-e_{k}=0.002 \Phi_{\infty} \frac{h_{\text {ef }}}{t_{\text {ef }}} \sqrt{\mathrm{te}_{\mathrm{m}}}$

- Usually taken as 0

The creep eccentricity, $\mathrm{e}_{\mathrm{k}}$, may be taken as zero - for all walls built with clay and natural stone units.

## Capacity Reduction Factor - Figure 5

 $\Phi_{\mathrm{i}}=1-2 \mathrm{e}_{\mathrm{i}} / \mathrm{t}$ top or bottom of wall $\Phi_{\mathrm{m}}=$ use graphs

## Vertical Load Resistance - Figure 6

$$
\begin{aligned}
& N_{R D}=\Phi t f_{d} \\
& -f_{d}=f_{k} / y_{m}
\end{aligned}
$$

- Therefore

$$
\begin{aligned}
-N_{R D} & =\Phi t f_{k} / Y_{m}-E C 6 \\
& =\beta t f_{k} / Y_{m}-B S 5628-1
\end{aligned}
$$

## Bearings under Concentrated

 loads(1) Concentrated loads should bear on a wall a minimum length of 90 mm or such distance as is required from calculations according to 6.1.3, whichever is the greater.
(2)Where the concentrated load is applied through a spreader beam of adequate stiffness and of width equal the thickness of the wall, height greater than 200 mm and length greater than \# X the bearing length of the load, the design value of the compressive stress beneath the concentrated load should not exceed $1,5 \mathrm{f}_{\mathrm{d} \text {. }}$
(3) For walls built with Groups 2, 3 and Group 4 masonry units and when shell bedding is used, it should be verified that, locally under the bearing of a concentrated load, the design compressive stress does not exceed the design compressive strength of masonry, $\mathrm{f}_{\mathrm{d}}$ (i.e. $\beta$ is taken to be 1.0).

# Concentrated loads under Bearings - 1 - Figure 7 



Elevotions.


Plan.


Section.

# Concentrated loads under Bearings - 2 - Figure 8 

Locally under the bearing of the concentrated load, the design compressive stress shall not exceed the following values:

- Walls built with Group 1 masonry units (not shell bedded):

$$
\begin{aligned}
\frac{f_{k}}{\gamma_{M}}\left[(1+0.15 \times) \cdot\left(1,5-1,1 \frac{A_{b}}{A_{o f}}\right)\right] \geq & \frac{f_{k}}{\gamma_{M}} \\
\leq & 1,25 \frac{f_{k}}{\gamma_{M}} \text { where } x=0 \\
& 1,5 \frac{f_{k}}{\gamma_{M}} \text { where } x=1,0
\end{aligned}
$$

- All other cases:

$$
\frac{f_{\mathrm{k}}}{\gamma_{M}}
$$

where: $\quad x=\frac{2 a_{1}}{H}$
$A_{b}$ is the bearing area, not taken to be greater than 0,45 Aer;

Aer is the effective area of the wall Lef $t$ (see figure 4.4).

## Concentrated Loads under Bearings - 3 - Figure 9

Graph showing the enhancement factor as given in 4.4.8: Concentrated loads under bearings.

dhiment

Det will STRE NATAC of MASDNRY arg ref-


Designi Axial herads *kN/m for vanour wall type


* Axirl lasol kN/n

$$
f_{k} 0.23 \mathrm{~m} / \mathrm{m}
$$



$$
\begin{aligned}
& \begin{array}{l}
h_{p}=E_{n} h=0.75 \times 3000 \Rightarrow 2250 \mathrm{~mm} \\
E_{\infty 0} \Rightarrow E_{E} \Rightarrow 180 \mathrm{~mm}
\end{array} \\
& h_{\text {eff }} t_{\text {ref }} \quad \rightarrow 2250 / 180 \Rightarrow 12.5
\end{aligned}
$$

Eccentricties - top $*$ bottom of watl
$e_{c} \circ\left(M_{i=} \mid N_{i n}\right)+e_{n=} \pm e_{\text {nd }}>0.05 t$
$M_{i j} / \mathrm{N}, \mathrm{d} \rightarrow 0$ concentric load capacte iq (umed
$i_{n} \rightarrow 0$ no honzuntal londs
$x_{\text {mod }}=h_{z=} / 450 \Rightarrow 3,250 / 450 \Rightarrow 5 \mathrm{mn}$
$\mu_{i}=0+0+5 \mathrm{~mm}=5 \mathrm{ml}<005 \mathrm{~L}-9 \mathrm{~mm}$
$D_{1} \rightarrow 1-2\left(c_{0} / E\right)$

$$
\Rightarrow 1-2(0.05)-0.9
$$

Hidole of unle

$$
\begin{aligned}
& \mathrm{E}_{m} \overrightarrow{\mathrm{M}} \mathrm{M}_{\text {mal }}\left(\mathrm{N}_{m \alpha}\right)+\text { eqm土x.mb } \rightarrow 0.05 t \\
& M_{m+} / N_{\text {n- }}=0 \\
& \text { Chin } \rightarrow 0 \\
& \text { einie } \sim h_{\text {eel }} \text { 250 } 02,250 / 450=5 \mathrm{~mm} \\
& l_{\mathrm{mL}} \rightarrow 0+0+5 \quad 75 \mathrm{~mm}<0.05 t=29 \mathrm{~mm}
\end{aligned}
$$

theretire emk $=0.05 \mathrm{E}$
$\varphi_{m}-0.79$ (from fios) - gevemo desyen
Vertial lond capeats

$$
\begin{aligned}
& =0 t \mathrm{Fy}_{1} / 7 \mathrm{~m} \\
& \Rightarrow 0.79 .0 .23 .464 / 2.2 \Rightarrow 383 \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

Demystifying the masonry Eurocode 6 \& 8 (seismic)

# 'Course C' Module 3 Arching, shear stresses \& Stability Moments in Masonry 

STRUCTURAL ENGINEER
DHI PERITI - WWW.dhiperiti.com

## UNREINFORCED MASONRY WALLS SUBJECT TO LATERAL LOADING

## Figure 1: Walls arching between supports

- resistance:
- design load resistance under arch action
- design strength of the support
-analysis may be baised on a three-pin arch


Figure 2: Walls arching between supports


- arch rise
$r=0.9 r-d_{n}$
- maximum design arch thrust per unit length:
- with small lateral deflection:
$\mathrm{N}_{\mathrm{ad}}=1.5 f_{\mathrm{d}} \frac{r}{10}$
- design value of vertical stress $\geq 0,1 \mathrm{~N} / \mathrm{mm}^{2}$
- slenderness ratio $\leq 20$

The arch rise is given by:

$$
0,9 \mathrm{t}-\mathrm{d}
$$

where:
d is the deflection of the arch under the design lateral load; it may be taken to be zero for walls having a length to thickness ratio of 25 or less.

The maximum design arch thrust per unit length of wall may be assumed to be:

$$
1,5 \frac{f_{k}}{\gamma_{\mathrm{m}}} \frac{\mathrm{t}}{10}
$$

and where the lateral deflection is small, the design lateral strength is given by:

$$
\mathrm{q}_{\mathrm{lat}}=\frac{\mathrm{f}_{\mathrm{k}}}{\gamma_{\mathrm{M}}}\left[\frac{\mathrm{t}}{\mathrm{~L}}\right]^{2}
$$

where:
$q_{\text {lat }}$ is the design lateral strength per unit area of the wall.

- AR PERITI
mTmLiothmal erambintatita

Xoxolk stab takino ot $4 \leq r a m$ thick er 230 m . wide compreone starensth

$$
\begin{aligned}
& F_{2} \Rightarrow K F_{b} \alpha F_{\ldots}{ }^{\circ} \\
& \Rightarrow 0.45,200.7 .40 .3 \\
& \Rightarrow 5.55 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

$$
\delta>0.45 \text { fou } 45 \mathrm{~mm} \times 230 \mathrm{~mm}
$$

$$
f_{d}=f_{2} d / 7 \mathrm{~m}
$$

$$
\Rightarrow 5.55 .0 .65 / 2.2 \rightarrow 1.64 \mathrm{~N} / \mathrm{hem}^{2}
$$

$$
9 \Rightarrow \operatorname{Fo}_{0}\left(\frac{\epsilon}{4}\right)^{2} \rightarrow 1640 .\left(\frac{0.045}{1}\right)^{2} \Rightarrow 3.32100 /\left.m\right|^{2}
$$

Resi dentule lacodur $-1.5 k N / m^{2}$

$$
\begin{aligned}
& 670 \\
& 6.10 \mathrm{~m} \\
& 0 \cdot 125,18 \cdot r \cdot 35+1 . S .15 \rightarrow 52 . \mathrm{kN} / \mathrm{m}^{2} \\
& \text { Q.125. } 18.1 .35+075.1 .5 \quad \rightarrow 4.61 \mathrm{kN}^{2} \\
& 6.10 \mathrm{~b} \quad 0.85 .0 .125 .18 .1 .35+1.5 .1 .5 \quad 4.83 \mathrm{~km} / \mathrm{m} \\
& \text {. } 50 \quad 4.4 C \overrightarrow{l n}>3.32 k+m^{2}>
\end{aligned}
$$

## Characteristic of shear strength of Masonry

Shear strength

- Principle: determination by test, but no test available Initial shear strength $f_{\text {vko }}$
- Principle: determination by test.
- EN 1052-3 (masonry)
- EN 1052-4 (dpc layers)

Shear strength of masonry will filled head joints

- $f_{\mathrm{vk}}=f_{\mathrm{vko}}+0,4 \sigma_{\mathrm{d}}$
- $f_{\mathrm{vk}} \leq 0,065 f_{\mathrm{b}}$ or $f_{\mathrm{vk}} \leq f_{\mathrm{vlt}}$

Shear strength of masonry with unfilled head joints

- $f_{\mathrm{vk}}=0,5 f_{\mathrm{vko}}+0,4 \sigma_{\mathrm{d}}$
- $f_{\mathrm{vk}} \leq 0,045 f_{\mathrm{b}}$ or $f_{\mathrm{vk}} \leq f_{\mathrm{vlt}}$

Shear strength of shell bedded masonry

- $f_{\mathrm{vk}}=\frac{g}{t} f_{\mathrm{vko}}+0,4 \sigma_{\mathrm{d}}$
= Not greater than with unfilled bed joint


## Table 1 - Values of the intitial shear strength of masonry, $f_{\text {vko }}$

| Masonty units | $f_{\text {vko }}\left(\mathrm{N} / \mathrm{mmm}^{2}\right)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | General purpose mortar of the Strength Class given |  | Thin layer mortar (bed joint $\geq$ $0,5 \mathrm{~mm}$ and $\leq 3 \mathrm{~mm}$ ) | Lightweight mortar |
| Clay | M10-M20 | 0,30 | 0,30 | 0,15 |
|  | M2,5-M9 | 0,20 |  |  |
|  | M1-M2 | 0,10 |  |  |
| Calcium silicate | M10-M20 | 0,20 | 0,40 | 0,15 |
|  | M2,5-M9 | 0,15 |  |  |
|  | M1-M2 | 0,10 |  |  |
| Aggregate concrete | M10-M20 | 0,20 | 0,30 | 0,15 |
| Autoclaved Aerated Concrete | M2,5-M9 | 0,15 |  |  |
| Manufactured stone and Dimensioned natural stone | M1-M2 | 0,10 |  |  |

Tests carried out on franka (Saliba 1990) gives an unconfined shear strength varying from 2.2 to $3.85 \mathrm{~N} / \mathrm{mm}^{2}$

## MINOR MASONRY ARCH DESIGN

The arch is likely to adopt a statically determinate 3-hinge formation. The 3-hinge method simplifies the application of engineering judgment in the assessment of simple masonry arches.

Treat the arch as a simply supported beam of the same span. Determine the vertical reactions under the loads concerned and the bending moments due to the horizontal thrust H, i.e.
$\mathrm{Hy}=\mathrm{M}$

Where $y$ is the maximum height of the arch above the line of the horizontal thrust, at a point distance from the support.

Once the horizontal thrust has been determined the maximum compressive stress in the masonry is determined from
$\mathrm{F}_{\mathrm{m}}=\mathrm{H} / \mathrm{bd}$

Where fm is the characteristic compressive stress in the masonry which should not exceed the masonry bearing stress, given above at $1.5_{\mathrm{fk}}$.
dhil periti

job now B1CC CPD $1<205$ shout no EOZ member flocation : 6mon unteroniedinta mach tio argrer Sif sm Micel regeom


$$
\begin{aligned}
& \mathrm{FNK}_{\mathrm{N}} \rightarrow \mathrm{f}_{\mathrm{Vko}}+\mathrm{D} .4 \mathrm{CH} \\
& \mathrm{O}_{2}=4035 \mathrm{kav} / \mathrm{O} / 0.23 \mathrm{~km} \quad \mathrm{~km} 0.17 \leq N / \mathrm{mm}^{2} \\
& f_{\text {uk }} \Rightarrow 0.1+0.17 .0 .0_{4} \Rightarrow 0.19 .5 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& A \rightarrow B=24 / \mathrm{BN} \rightarrow 2 \mathrm{~B} / 0.55 \mathrm{~m} \rightarrow 45.25 \mathrm{kN} \\
& x \quad 4.25 /(2.32 \times 1: 5) / 0.25 \quad-5.65 \mathrm{~cm} \\
& b_{c} \rightarrow 0-23 \ldots+2.0-15 / 2 / 20-6.8 \text { in } \\
& n_{p i a} \rightarrow \frac{H}{2} \left\lvert\, \frac{F_{H}}{1 \sim}\left(\frac{t+}{2}\right)\right. \\
& \Rightarrow \frac{45-25}{2}\left|\frac{0-25}{2.2}\right| 0.6 .8 \\
& 30.418 \mathrm{~m}
\end{aligned}
$$

$p-I$



# Walls subjected to lateral earth pressure 

(1)P Walls subject to lateral earth pressure shall be designed using acceptable engineering principles.

Note: the flexural strength of masonry $f_{\mathrm{xk} 1}$ should not be used in the design of walls subjected to lateral earth pressure.

## FREE STANDING WALLS

Walls over 1.80 m in height should be referred to a perit for checking.
Table 2 - Height to thickness ratio related to wind speed.

| Wind Pressure KN/m2 | Height to thickness ratio |
| :---: | :---: |
| 0.30 | Not exceeding 10 |
| 0.60 | 7 |
| 0.85 | 5 |
| 1.15 | 4 |

When damp-proof courses incapable of developing adequate bond are used, the height to thickness ratio should not exceed $75 \%$ of the appropriate value in table 18. The use of such dpc's are not generally recommended.
The following rule of thumb may be followed for wall panels 225 mm thick subjected to wind speed of $47 \mathrm{~m} / \mathrm{s}$. the maximum wall area for a panel fixed on 3 sides is to be limited to $20 \mathrm{~m}^{2}$ and to $16 \mathrm{~m}^{2}$ for a panel pinned on one or more of the three supported sides.

## EARTH RETAINING WALLS

Ideally retaining walls should have an impervious lining on the side adjacent to the retained material to prevent moisture damaging the mortar and the masonry. All earth-retaining walls should be provided with weep holes of 50 mm minimum diameter at 3.00 m centers to allow for adequate drainage. An alternative is drainage at the rear of the wall with open joints (French drain), surrounded by crushed stone.

Table 3 Height to thickness ratios for retaining walls

| Height of retained material - m | Height to thickness ratio |
| :---: | :---: |
| $090$ | $4$ |
| $120$ | $3.3$ |
| $150$ | $35$ |
| $180$ | $3.25$ |

The above details are based on no surcharge and slope of retained earth not greater than 1:10. unless walls are constructed in a flexible mortar, i.e. not containing cement but lime, movement joints are necessary if cracking is to be avoided.

## EARTH RETAINING WALLS (cont.)

The economy of constructing masonry retaining walls is to be stressed, but above a height of 2.00 m reinforced masonry retaining walls tend to become more economical, with a stepped reinforced masonry retaining wall offering further economies above a height of 4.00 m .

Provided that the top of the wall is unrestrained, the earth pressure will be equal to the active pressure. It is recommended that walls in cohesive soils are never designed for a pressure ( $\mathrm{KN} / \mathrm{m} 2$ ) of less than 4.8 times the height in metres of the retained material. In addition to the active earth pressure, allowance must be made for water pressure where it develops and any surcharge on the retaining side of the wall.

As partial safety factors are included in the limit state approach the factors of safety for stability analysis are not required, other than in the sliding analysis where a factor of safety of 2 is to be adopted.

# Design moment of resistance of free-standing wall without flexure 



Figure 3
the design vertical losed $n$. is resisted by a rectangular stress. biack of width $t=$
on the pont of talure by rotation about 0 . under the action of the applied toad $F$ the stress block is firmited by the design compressive strength ${ }^{1} /_{7_{\text {m }}}$
the rrumment of resistarnce aboul 0 availatie to resist the applied moment dive to $F$ is
$n_{-} \times \frac{t}{2}-\left(\frac{f_{b}}{\gamma_{m}}, t_{n}\right) \frac{t_{b}}{2}$
but $n_{-}=t_{b} \times \frac{t_{k}}{\gamma_{m}}$ or $n_{n}=n_{-} \frac{Y_{m}}{f_{k}}$
$\therefore$ design moment of resistance $=$

$$
\frac{n_{m}}{2}\left(t-\frac{r_{m}-\gamma_{m}}{t_{m}}\right)
$$

dhil ${ }_{\text {PERIT }}$

Fob tive MASOWPM KGTANALING WALLL

 macte by DHK cinter 05/15


Siatoility Calculation accondung to ECT 7 Design Apprwach I (Str| Guer) Combination I.


$$
e \Rightarrow B H / N=(11.38=1.35) / 95125 \Rightarrow 0.31+m
$$ (maddel thurd fadass out olinta)

$$
x \Rightarrow P_{4} \left\lvert\, \frac{F_{2}}{7 m} \rightarrow 45.125 / \frac{4.91}{2 \cdot 2} \Rightarrow 0.2022 \mathrm{~m}\right.
$$

$$
6 M \Rightarrow 11.38 \times 1.35 \rightarrow 15.36 \mathrm{kN}-\mathrm{m} / \mathrm{m}
$$

$$
\pi R \rightarrow \frac{N}{2}\left(E-\frac{N \cdot y m}{F_{t}}\right) \rightarrow \frac{N}{2}(E-x)
$$



$$
\Rightarrow 45.125 / 2 \times(0.95-0.2022)=16.87 k N-m />
$$

for $E \rightarrow 0.9 \quad M R \rightarrow 15.14<15.34 \mathrm{kN} / \mathrm{m} / \mathrm{m}$
Check Slidang at tse bearn

$$
\begin{aligned}
V \Rightarrow 13.653=1.35 & \Rightarrow 18.44 \mathrm{kN} / \mathrm{m} \\
V & \Rightarrow 18.44 / 0.95 .1 \mathrm{~m} \Rightarrow 0.0 .94 \mathrm{~N} / \mathrm{mm}^{2} \\
f_{v=} & \Rightarrow \mathrm{f}_{\mathrm{vk}}+0.400 \\
& \Rightarrow 0.1+0.4 .45125 / 0.95 \\
& >0.119 \mathrm{~N} 1 \mathrm{~mm}^{2}>0.0194 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

## Demystifying the masonry Eurocode 6 \& 8 (seismic)

DENIS H CAMILLERI
STRUCTURAL ENGINEER
DHI PERITI - WWW.dhiperiti.com
BICC Eurocodes CPD

‘Course C’ Module 4 Tensile Stresses in Masonry

## Characteristic flexural strength of unreinforced masonry

- SYMBOL: $\mathrm{f}_{\mathrm{xk}}$
- determined from the results of tests on masonry produces
- two different values:
$-\mathrm{f}_{\mathrm{xk} 1}$ : failure parallel to the bed joints,
$-\mathrm{f}_{\mathrm{xk} 2}$ : failure perpendicular to the bed joints.
Flexural strengths $\mathrm{f}_{\mathrm{xk} 1}$ and $\mathrm{f}_{\mathrm{xk} 2}$
- use of $\mathrm{f}_{\mathrm{xk} 1}$ :
- only for transient loads ( for example wind)
$-\mathrm{f}_{\mathrm{xk} 1}=0$, where failure of the wall would lead to a major collapse.


## Walls subjected to lateral wind loads - 1 <br> - Support conditions and continuity

(1)P In assessing the lateral resistance of masonry walls subjected to lateral wind loads, the support conditions and continuity over supports shall be taken into account.
(2) The reaction along an edge of a wall due to the design load may normally be assumed to be uniformly distributed when designing the means of support. Restraint at a support may be provided by ties, by bonded masonry returns or by floors or roofs.

## Walls subjected to lateral wind loads - 2 Method of design for a wall supported along edges

Miasoniy walls ara rapt isatiopic
Ealicl therse is ary onthomanial strencatif ratio depernding on the kinit and the mortar used
The calculatign of the desigri mamerit, Na, shouldilake this Hita aqcacinit

whien the phatio of tailume is perpetndicunar ta the peci jomis, i日 ir the fewa direction.

frikz Plane of fallure perperdicular to bed joints
$41=$

$$
\mathrm{MA}_{\mathrm{d}}=4 \infty \mathrm{M}=\mathrm{H}_{\mathrm{N}} \mathrm{~L} \text { per umit lonath of the veall }
$$

wher the plame fallure is pareallal to the fad joints. te in the fant cirectiont.

frit Plane of failure parallel to bed joints

## Walls subjected to lateral wind loads - 2 Method of design for a wall supported along edges - Continued

## Mriete














-3 -


$$
\text { Thai }+ \text { Thu cy pre }
$$

whitere


 citerriny

$$
\mathrm{N} \Lambda_{\mathrm{RHI}} \quad-\frac{\mathrm{I}_{\mathrm{n}}-\geq}{\mathrm{YNA}_{\mathrm{Ni}}}
$$

velitare

## Table 1 - BENDING MOMENT COEFFICIENT FOR TWO WAY SPANNING PANELS SUBJECTED TO LATERAL LOADS ( $\mu=0.35$ )

Values of a

| $\frac{h}{L}$ | 1 | 2 |  |  |  |  |  |  |  |  | $\qquad$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.30 | $0 \cdot 045$ | $0 \cdot 035$ | 0029 | 0.022 | $0-018$ | 0.016 | $0-014$ | 0.009 | $0 \cdot 024$ | 0.021 | 0016 |
| 0.50 | 0-064 | $0 \cdot 049$ | 0.039 | 0.032 | 0.035 | $0 \cdot 029$ | 1)0.25 | 0.017 | $0 \cdot 055$ | 0.045 | 0.035 |
| 0-75 | 0-080 | 0.059 | $0-045$ | 0.040 | 04052 | $0 \cdot 041$ | 0.033 | 0-026 | 0-098 | 0.075 | $0 \cdot 060$ |
| 1.00 | 0-089 | 0.065 | 0.049 | 0.044 | $0 \cdot 064$ | $0 \cdot 050$ | 0.039 | 0.032 | 0. 144 | 0.104 | 0-084 |
| 1.25 | 0.095 | 0.068 | 0-052 | 0.048 | 0.074 | 0-055 | 0.043 | 0.037 | 0.194 | 0.129 | 0.108 |
| 1.50 | 0.100 | $0-071$ | 0.053 | 0.059 | 0.081 | 0.060 | 0.046 | 0.040 | 0.244 | 0.152 | 0.129 |
| 1.75 | 0.103 | 0.073 | 0.054 | 0.051 | 0.086 | $0 \cdot 063$ | 0.048 | 0.043 | 0.296 | 0.173 | $0 \cdot 148$ |


denotes free edge
$\times \times \infty \times \times \times$ denotes an edge cwer which continuity exists
NMNXIM denotes simply supported edge

## Figure 1 - Limiting height and length to thickness ratios of walls restrained on all four edges

$$
=
$$




气nत" 1)

Key

1) simply supported or with full continuity

## Figure 2 - Limiting height and length to thickness ratios of walls restrained at the bottom, the top and one vertical edge



(XVME l)

Key

1) simply supported or with full continuity

## Figure 3 - Limiting height and length to thickness ratios of walls restrained at the edges, the bottom, but not the top



"乡ौौ 1)

Key

1) simply supported or with full contimuity

## Calc Sheet

## Demystifying the masonry Eurocode 6 \& 8 (seismic)

## ${ }^{`}$ Course C' Module 5 Stability \& seismic action in Masonry Structures

## Stability of Walls \& Piers subject to Vertical Loading - Figure 1



THE EXTENT OF DAMAGE SHOULD NOT BE DISPROPORTIONATE TO ITS CAUSE
EC6 gives this at 1\% of the combined vertical characteristic dead and imposed load at the particular floor divided by $\sqrt{ } \mathrm{h}_{\text {tot }}$
Their effect may be ignored, if less onerous than other horizontal actions eg. wind

# Structural behaviour and overall stability 

## Design models for structural behaviour

- To ensure stability and robustness,
it is mecessary for the layout of the structure on plan and section, the interaction of the masonry parts, and their interaction with other parts of the structure, to be such as to produce a properly braced arrangement.
- Structures incorporating masonry walls, should have their parts suitably braced together, so that sway of the structure will not occur.
- The possible effects of imperfections should be allowed for, by assumning that the structure is inclined at an angle $v$


$$
v=\frac{1}{100-\sqrt{\mathrm{h}_{\mathrm{tot}}}}
$$

## Second order effects

(1)P Structures incorporating masonry walls designed according to this EN 1996-1-1 shall have their parts braced together adequately so that sway of the structure is either prevented or allowed for by calculation.
(2) No allowance for sway of the structure is necessary if the vertical stiffening elements satisfy equation ( 5.1 ) in the relevant direction of bending at the bottom of the building:

$$
\begin{equation*}
h_{\text {tot }} \sqrt{\frac{N_{\mathrm{EA}}}{\sum E I}} \quad \leq 0,6 \text { for } n \geq 4 \tag{5.1}
\end{equation*}
$$

where:
$h_{\text {tot }}$ is the total height of the structure from the top of the foundation:
$N_{\mathrm{Ed}}$ is the design value of the vertical load (at the bottom of the building);
$\Sigma E I$ is the sum of the bending stiffnesses of all vertical stiffening building elements in the relevant direction;

NOTE Openings in vertical stiffering elements of less than $2 \mathrm{~m}^{2}$ with heights not exceeding $0,6 \mathrm{~h}$ may be neglected.
$n$ is the number of storeys.
(3) When the stiffening elements do not satisfy 5.4 (2), calculations should be carried out to check that any sway can be resisted.

## Structural Analysis

## Imperfections

Structure is supposed to be inclined under an angle

$$
v=\frac{1}{\left(100 \sqrt{h_{\mathrm{tot}}}\right)}
$$

The resulting horizontal action should be added to the other actions

## Second order effects

No influence when:

$$
h_{\text {tot }} \sqrt{\frac{N_{\mathrm{Ed}}}{\sum E I}} \leq 0,6 \text { for } n \geq 4
$$

When the stiffness is not large enough: calculation (e.g. by Annex B)

## DEFLECTION \& ROTATION COEFFICIENTS FOR A CANTILEVER

## Table 1: Updated ' C ' deflection coefficient for moment of inertia calculation for a cantilever span condition

| Span to | Steel | Concrete | Timber |
| :--- | :--- | :--- | :--- |
| deflection ratio | $E=205 \mathrm{kN} / \mathrm{mm}^{2}$ | $E=30 \mathrm{kN} / \mathrm{mm}^{2}$ | $E=\mathrm{kN} / \mathrm{mm}^{2}$ |
| $1 / 300$ - udl | 18.3 | 125 | 469 |
| $1 / 300-$ pt load | 48.3 | 330 | 1,238 |

Rotation in rad (udl)
Rotation in rad (point load)
= 1.33 X span : deflection ratio
$=1.50 \mathrm{X}$ span : deflection ratio

## Instrumental seismicity sicily channel 1900-2000 - figure 2

Instrumental Seismicity Sicily Channel 1900-2000


Source: ISC Bulletin, INGV, EMCS

# Figure 3: Site seismic history for the Maltese islands since 1500, showing EMS-98 / $\geq$ IV. 



Source:- Dr. Pauline Galea - Annals of Geophysics, Vol. 50, N. 6, December 2007

Iable 2 Subset of felt earthquake catrilogue, showing only events that produced EMSS-98 I $=V$ and over on the Maltese islands.

| Yeal | Month | Day | Hour | Lat | Long | Region $I_{\text {max }}$ | on Malte islands | $\text { ase } I_{0}$ | M | Parameter reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1542 | 12 | 10 | 15:15 | 3720 | 14.90 | E. Sicily | WII | XI | $M_{m} 6.6$ | Gruppo di Lavoro CPTI (2004) |
| 1562 | 3 | 8 | Morning |  |  | Sicily Chamel? | V 2 |  |  |  |
| 1636 | 9 | 1 |  |  |  | Sicily <br> Chamnel(7) | V7 |  |  |  |
| 1693 | 1 | 11 | 13.30 | 3718 | 15.02 | E. Sicily | VII-VIII | NI | $M_{\mu} 7.4$ | Boschi er al (2000) |
| 1743 | 2 | 20 | 1630 | 39.87 | 18.78 | Ionian Sea | VII | LX | M. 6.9 | Gruppo dil Lavoro CPTI (2004) |
| 1789 | 1 | 19 | Morning |  |  | $\begin{gathered} \text { Sicily } \\ \text { Chamel(?) } \end{gathered}$ | V 2 |  |  |  |
| 1793 | 2 | 26 | Monning |  |  | Sicily Chamuel? | v? |  |  |  |
| 1846 | 1 | 11 | 12.00 | 37.20 | 1520 | E. Sicily | V | VIII-DX | M 5.5 | Gruppo di Lavono CPTI (2004) |
| 1856 | 10 | 12 | 00.45 | 35.60 | 26000 | Crete | VII |  | $M_{0} 7.7$ | Papazachos et at. (2000) |
| 1861 | 2 | 8 | 23.45 |  |  | Sicily <br> Channel(?) | V? |  |  |  |
| 1886 | 8 | 15 | 02:45 |  |  | Sicily <br> Chamell? | V |  |  |  |
| 1886 | 8 | 27 | 22.00 | 37.00 | 27.20 | Aegean Sea | VI-VII | XII | M. 7.3 | Papazachos et at (2000) |
| 1911 | 9 | 30 | 109-25 | 36.47 | 13.57 | Sicily Chammel | VII |  |  |  |
| 1923 | 9 | 18 | 107.30 | 35.57 | 1457 | Sicily Charnel | VI |  |  | 1SC (2001) |
| 1926 | 6 | 26 | 19.46 | 36.50 | 27.50 | Aegean Sea | V |  | M. 7.6 | Papaazhos ct al (2000) |
| 1972 | 3 | 21 | 23.06 | 35.80 | 15.00 | Sicily Channel | V |  | $M, 4.5$ | ISC (2001) |

[^0]
# Figure 4 - Estimated return periods, following the methodology of Magri et al. (1994). 



EMS-98 Intensity

# Figure 5 - GSHAP - (Global Seismic Hazard Assessment project) map for Europe 



Malta is a green colour corresponding to $0.05 \mathrm{~g}-0.06 \mathrm{~g}$. But the data on which this was complied was probably very sparse for Malta

## Table 3 - Malta's Seismic Zoning EC8

Design grd. Acceleration for a return period of [475] yrs (EC8) taken at 0.06 g (being the ground motion level which is not going to be exceeded in the 50 years design life in $90 \%$ of cases for no collapse requirement. For damage limitation exceedence this is to be based on a 95 yr return period, which signifies a 10\% chance of exceedence.

| MM - Earthquake <br> Intensity | Return Period (years) | Base Shear Design <br> $\%$ of $g$ |
| :---: | :---: | :---: |
| V | 8 | $1-2$ |
| VI | 40 | $2-5$ |
| VII | 90 | $5-10$ |
| VIII | 1000 | $10-20$ |

Defined as a low seismicity zone as $<0.08 \mathrm{~g}$ but $>0.04 \mathrm{~g}$ EC2 concrete provisions to be catered for not EC8

# Table 4 - Classification of Building according to anticipated Earthquake Intensity Damage 

| Type | Description | Base shear <br> design \% of <br> gravity |
| :---: | :--- | :---: |
| A | Building of fieldstones, rubble masonry, adobe and <br> clay | $0.5 \%$ |
| B | Ordinary unreinforced brick buildings, buildings of <br> concrete blocks, simple stone masonry and such <br> buildings incorporating structural members of wood; | $0.7 \%$ |
|  | Buildings with structural members of low-quality <br> concrete and simple reinforcements with no allowance <br> for earthquake forces, and wooden buildings, the <br> strength of which has been noticeable affected by <br> deterioration; | $0.9 \%$ |
| $D_{1}$ | Buildings with a frame (structural members) of <br> reinforced concrete | $2-3$ |

Buildings found in Malta are mostly found in types $C$ \& $D$, buildings deteriorated at B. Further buildings classified as $D_{2}$ up to $D_{5}$ with a $D_{5}$ building frame able to withstand a $20 \%$ gravity base shear.

## Figure 6 - Comparative chart of earthquake intensity scales, ground acceleration levels and design requirements






MM-Monditiest Morkiali/ 19Es



Several empirical formulae have been proposed linking intensity with magnitude. Often these refer specifically to studies in limited areas, such as the work done by Richter in California. In the assessment of intensity used in this Note, the formula used is:

$$
\text { where } \quad \begin{aligned}
I & =8.0+1.5 M-2.5 \log _{e}\left(h^{2}+d^{2}+400\right)^{0.5} \\
I & =\text { Intensity (MM) } \\
M & =\text { Magnitude (Richter) } \\
h & =\text { Focal depth (km) } \\
d & =\text { Distance from the epicentre (km) }
\end{aligned}
$$

## Table 5 - Mean Damage Ratio (MDR) \& Death Rates for building types B \& C founded on rock

| Building <br> Type | B |  |  | C |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Earthquake <br> Intensity <br> MM | MDR | Death <br> Rate | Mean <br> damage costs <br> as \% of re- <br> building <br> costs | MDR | Death <br> Rate | Mean damage <br> costs as \% of <br> re-building <br> costs |
| 5 | $2 \%$ | - | $2.5 \%$ | - | - | - |
| 6 | $4 \%$ | - | $6 \%$ | $\mathbf{1 \%}$ | - | $1.25 \%$ |
| 7 | $20 \%$ | $0.03 \%$ | $40 \%$ | $\mathbf{1 0 \%}$ | - | $15 \%$ |
| 8 | $45 \%$ | $1 \%$ | $135 \%$ | $\mathbf{2 5 \%}$ | $0.4 \%$ | $62.5 \%$ |

Source: Swiss Re (1992)
For a type 'B' building non structural damage would amount to $50 \%$ of MDR , increasing to 70\% for a type 'C' building.
As the quality of a building goes up, the contribution of non-structural damage increasing, the death rate reduces, but a higher number of injuries occur.

# Table 6 - Amended damage Ratio Matrix for Higher Irregularity \& Asymmetry founded on rock 

| Building Type | C | $\mathrm{D}_{1}$ |
| :---: | :---: | :---: |
| EARTHQUAKE <br> INTENSITY |  |  |
| V | $10 \%$ | $5 \%$ |
| VI | $30 \%$ | $18 \%$ |
| VII | $60 \%$ | $40 \%$ |
| VIII | $100 \%$ | $72 \%$ |
| IX | $100 \%$ | $95 \%$ |

If founded on clay move up to higher intensity if on fill material to a further higher intensity

## TABLE 7 - DAMAGE PROBABILITY MATRIX FOR BUILDING (DPM)

| Damage class <br> $\%$ of value | Mean <br> Damage <br> Ratio (\%) |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | -1.5 | (A) | 1.5 | 83 | 73 | 60 | 10 | 25 | 37.5 | 50 |

# TABLE 8 - PERCENTAGE OF BUILDINGS WIH 80-100\% DAMAGE DEPENEDING ON MDR 

| MDR | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Percentage | 0.25 | 3.5 | 10 | 20 | 30 | 45 | 56 | 70 | 85 |

As a rule of thumb about 1/4-1/8 of the population in the $\mathbf{8 0 \%}$ - $\mathbf{1 0 0 \%}$ damage class will be killed

## SEISMIC DESIGN TO EC8 - PART 1

EC8 relates to 6 parts with -
Part 2 relating to bridges
Part 3 relating to seismic assessment \& retrofitting of existing buildings.
Part 4 relating to silos, tanks \& pipelines.
Part 5 relating to foundation design.
Part 6 relating to towers, masts \& chimneys.

Part 1 relates to specific structural materials - concrete, steel, timber \& masonry.

The FS to masonry for seismic design is to be taken at $2 / 3$ 's of the FS for the permanent load design, but not less than 1.5.

## MASONRY DESIGN CRITERIA FOR ZONES OF LOW SEISMICITY (EC8)

1. Shear walls in unreinforced manufactured stones units
$t \geq[175] \mathrm{mm}$
$h_{\text {ei }} / t \leq[15]$
2. A min of 2 parallel walls is placed in 2 orthogonal directions. The cumulative length of each shear wall $>30 \%$ of the length of the building. The length of wall resisting shear is taken for the part that is in compression.
3. For a design ground acceleration $<0.2 \mathrm{~g}$ the allowed n 0 of storeys above ground allowed is [3] for unreinforced masonry and [5] for reinforced masonry, however for low seismicity a greater no allowed.
4. Mortar Grade (M5) although lower resistance may be allowed. Reinforced masonry type (M10). No need to fill perp. Joints.

# MASONRY IMPROVED STURDINESS FOR ASEISMIC DESIGN - FIG. 7 



Unreinforced masonry shear walls $\mathrm{t}_{\text {ef }}=350 \mathrm{~mm} \mathrm{~h}_{\text {ef }} / \mathrm{t}_{\text {ef }}=9 \mathrm{~L} / \mathrm{h}=0.5$ Reinforced masonry shear walls $t_{\mathrm{ef}}=240 \mathrm{~mm} \mathrm{~h}_{\mathrm{ef}} / \mathrm{t}_{\mathrm{ef}}=15$

# Example of overcoming unsymmetrical requirements when large opening required on one side - FIG. 8 

 Forming stiffening piers at 7 m centres, with min outstand of $h / 5$
$\mathrm{t} \leq \mathrm{h} / 15$

Chi


fobtike solants/STOSAHK SLABILITM


Cuinuate

dhiterm

job na: BICC CPD/C 20/S I thate na: FOZ mamberllocetion REFAIL DUTLET
Deb athe WindolSEISHIC STABILITY. alra ret. mandeby: DONC

1 dater $06 / 15$
for $T_{B}<T \geqslant T_{2} \quad 0.15 \leqslant 0.32<0.12$ (andbry $A \times 5$ )

$$
\begin{aligned}
& \left.S_{(v)} \Rightarrow a_{s} .5 .2 .2 .5 \text { (eq. } 3.3 / \mathrm{KCB}\right) \\
& a_{3} \rightarrow \text { ODBS (Hilt-NA) } \\
& s \rightarrow 1 \text { (rich frumdition) } \\
& \eta=\sqrt{101}(5+*)
\end{aligned}
$$

$\eta$ in the dampmp correction factar, wath $n \rightarrow 1$
fur $5 \%$ viscous dumpine ratio
for maoumis to be fatem at $13 \%$

$$
\begin{aligned}
& n \rightarrow \sqrt{10 /((5+13) \rightarrow 0.745} \\
& S_{C T} \rightarrow 0.08 .1 .07452 .5 \rightarrow 0.149
\end{aligned}
$$

SEISMIC LOAD COMEINATION FACTOR.

$$
\begin{aligned}
& \sum_{\psi} G_{k j}+\sum_{\infty} \psi_{\text {on }} Q_{k} \\
& \begin{array}{l}
\psi=x \rightarrow D_{i} \quad \text { (take } 4 \cdot 2 / E c B \text { retal unct) }
\end{array} \\
& \psi_{21} \rightarrow 0.6 \text { (tubh A.1.1. CPDA/module 2) } \\
& D L \rightarrow 0.1 .2 S+0.1 .1 B \mathrm{kN} / \mathrm{m}^{2} \\
& \alpha .2 \Rightarrow 10.6 .5 \mathrm{kN} / \mathrm{m}^{2} \\
& 73 \mathrm{~km} / \mathrm{m}^{2} \\
& Z \mathrm{~N} / \mathrm{fl}-7.3 \mathrm{kN} / \mathrm{m}^{2} \cdot 2.5 \mathrm{~m} .12 \mathrm{~m} / \mathrm{z} \\
& \text { blw } \quad 15 \mathrm{cos} .1 .35 \mathrm{kN} / \mathrm{fx} / \mathrm{mm}^{2} .2 .5 \mathrm{~m} \\
& 160 \mathrm{kN} / \mathrm{FIN} \\
& \sum N \quad 160 \mathrm{kN} / \mathrm{fir} \text { Sfl. } \\
& \text { 4eoln }
\end{aligned}
$$

- ค) PERIT
arraboturain abryimblante



$$
\begin{aligned}
& \lambda \rightarrow 0.85 \cdots=T_{1} \rightarrow 0.325<2 T_{5}
\end{aligned}
$$

verev $2 T_{C} \rightarrow 2.0 .4 \Rightarrow 03>0.325$
2 hus morc thmm 2 stavies ( $\& C B /$ pme 4.3 .52 .2 )
An impurtowace factar is aldors i+ Le cansiden (tank (ta $3 / E C B$ )
whicel Firltars arolionatis buekoleng mons be falen at I, what covel uncwuset to f. 2 fir Si hoder, 1.4 for haspituls arod O.B fir ingrowitueve bualdengs
$F_{B}=30.149$ 4.esokN.0.ess $s \rightarrow 0 \mathrm{kN}$ at $2 \cdot 5 \mathrm{~m}$ \&
Distntation of Fiower ht of bldgat 2sm ats

$$
\begin{aligned}
& Z_{1} m_{g}>12 \mathrm{~m} \quad F_{s} \rightarrow \frac{12}{2 / 15},<0 \\
& Z_{2 m 2} \quad 7.5 \mathrm{~m} \quad F_{2}>\frac{255}{24.25}, 60
\end{aligned}
$$

$$
\begin{aligned}
& \#_{7,003} \rightarrow 23,25
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{N} \rightarrow 160 \mathrm{kN} / \mathrm{f} \boldsymbol{\mathrm { N }} \mathrm{x} 3 \mathrm{f} \mathrm{f} \quad \Rightarrow \quad \Rightarrow 4 \mathrm{kN}
\end{aligned}
$$

(-) PERTB

 वfन्दु reve:

PORTALE FRAMTD HETHDD OF DDESIGN
 othewwise so Fure fied cart lewre shesign

$$
B H \rightarrow \frac{1 k N 1 m^{2} \cdot 2 \cdot 5 n \cdot 12^{2} / 2}{2}
$$

3 load cuses to be cutaned for:

$$
\leq x: 5 i+3: c
$$

| wind (parta) | 550 | 42 | 480 |
| :---: | :---: | :---: | :---: |
| mond (contiReota) | 135 | 480 | 1.15 |
| m. | 480 | 0.28 |  |

The hish sevismic e obtand, fonds fo wueciule ther conopretum
dhil ${ }_{\text {PERITI }}$ nb ma EiCC CPD/C20S sheat no: FOS
ranare tramer fer

DESIGN CHECK to be undertaten for the Cinititure (Wimb) by the Stabilits Moment Calculation.

$f_{d}>f_{k} / y_{m}$ where $y_{m} \rightarrow 0.67-2.2 \rightarrow 1.474<1.5$

$$
\approx 4.41 / 1.5-3.27 \mathrm{~N} / \mathrm{mm}^{2} .
$$

$x \rightarrow 480 \mathrm{hw} / 3270 \mathrm{kN} / \mathrm{rm}^{2} / 0.6 \mathrm{~m} \rightarrow 0.245 \mathrm{~m}$
$H R \Rightarrow P L_{a}$
$l_{a}=\mathrm{H} / 2-0.245 / 2 \sim(\mathrm{H}-0.245) / 2$
$135 \Rightarrow 480(H-0.245) / 2$
$H \rightarrow 0.8075 \mathrm{~m}$ (say 0.8 m )
DEFIECTION CHECK

$$
\begin{aligned}
& E=\text { CWL }^{3} \\
& E_{\text {many }} \rightarrow 4000 \times 20 \mathrm{~N} / \mathrm{mm}^{2} \rightarrow 20 \mathrm{kN} / \mathrm{mm}^{2} \\
& C \rightarrow 125 \times 30 / 20 \quad=187.50(\mathrm{spm} / \mathrm{h}=300 \text { ) } \\
& I \Rightarrow 18750\left(1 \mathrm{kN} / \mathrm{m}^{2} \times 2 \cdot 5 \mathrm{~m}\right) \cdot 12^{3} \mathrm{O} 810000 \mathrm{~cm} 4 \\
& I \Rightarrow b d 3 / 12 \\
& d \Rightarrow(12.810,000 / 0.6)^{5} \Rightarrow \$ 43 \mathrm{~cm}<\text { Soam }
\end{aligned}
$$

Chi




$$
\begin{aligned}
& \begin{array}{|c|c|}
\hline \text { Nat } & I_{r a t} \rightarrow 60^{3} / 12 \\
& \rightarrow 60.80^{3} / 12 \rightarrow 2,560,000 \mathrm{can}^{h}
\end{array} \\
& \text { actual }=\operatorname{pan} / 8 \rightarrow 3000 \times 3520,000 / 800,000 \Rightarrow 980 \\
& \delta \rightarrow 12 \mathrm{~m} / 900 \quad \rightarrow 1225 \mathrm{~mm} \\
& \text { reheckary from page Fol } \\
& T_{1}=2 \sqrt{\lambda} \rightarrow 2 /(001225)^{2} \\
& \Rightarrow 0.16 s>0.15=
\end{aligned}
$$

Rotation emulation

$$
\begin{aligned}
\theta & \rightarrow 1.333 /(\text { spam } / \mathrm{d}) \\
& -1.333 / 980 \Rightarrow 0.00136 \mathrm{rod}) \\
H & \Rightarrow 1 / 100 \sqrt{h+12} \\
& \Rightarrow 1 /(100 . \sqrt{12})
\end{aligned}
$$


[^0]:    Source:- Dr. Pauline Galea - Annals of Geophysics, Vol. 50, N. 6, December 2007

