GEOTECHNICS FOR THE STRUCTURAL ENGINEER

DENIS H. CAMILLERI dhcamill@maltanet.net BICC – CPD 22/04/05

The Development of Foundation limit State Design

- Before World War II codes of practice for foundation engineering were used only in a small number of countries.
- In 1956 Brinch Hansen used for the first time the words "limit design" in a geotechnical context.
 Brinch linked the limit design concept closely to the concept of partial safety factors, and he introduced these two concepts in Danish foundation of engineering practice.

Basis Behind Eurocode 7

The Limit state concept is today widely accepted as a basis for codes of practice in structural engineering. From the very beginning of the work on the Eurocodes it was a foregone conclusion that the Eurocodes should be written in the limit state design format and that partial factors of safety should be used.

Consequently it was decided that also those parts of the Eurocodes which will be dealing with geotechnical aspects of design should be written in the limit state format with the use of partial factors of safety Geotechnical Categories & Geotechnical Risk Higher Categories satisfied by greater attention to the quality of the geotechnical investigations and the design Table 1-Geotechnical Categories related to geotechnical hazard and vulnerability levels

	ar Categories related to ge	soccomment muzur a una v	unierubinty ieveib				
Factors to be	Geotechnical Categories						
considered	GC1	GC2	GC3				
Geotechnical hazards /vulnerability /risk	Low	Moderate	High				
Ground conditions	Known from comparable experience to be straightforward. Not involving soft, loose or compressible soil, loose fill or sloping ground.	Ground conditions and properties can be determined from routine investigations and tests.	Unusual or exceptionally difficult ground conditions requiring non-routine investigations and tests.				
Regional seismicity	Areas with no or very low earthquake hazard	Moderate earthquake hazard where seismic design code (EC8 Part V) may be used	Areas of high earthquake hazard				
Surroundings	Negligible risk of damage to or from neighbouring structures or services and negligible risk for life	Possible risk of damage to neighbouring structures or services due, for example, to excavations or piling	High risk of damage to neighbouring structures or services				

 Table 1 (cont.)

	Ge	otechnical Categories	
	GC1	GC2	GC3
Expertise required	Person with appropriate comparable experience	Experienced qualified person – Civil Engineer	Experienced geotechnical specialist
Design procedures	Prescriptive measures and simplified design procedures e.g. design bearing pressures based on experience or published presumed bearing pressures. Stability of deformation calculations may not be necessary	Routine calculations for stability and deformations based on design procedures in EC7	More sophisticated analyses
Examples of structures	 Simple 1 & 2 storey structures and agricultural buildings having maximum design column load of 250kN and maximum design wall load of 100kN/m Retaining walls and excavation supports where ground level difference does not exceed 2m 	Conventional: - Spread and pile foundations - Walls and other retaining structures - Bridge piers and abutments Embankments and earthworks	 Very large buildings Large bridges Deep excavations Embankments on soft ground Tunnels in soft or highly permeable ground

Ultimate Limite State (ULS) partial factors (persistant & transiet situations)

Table 2- Partial factors for ultimate limit states in persistent and transient situations

Parameter	Factor	Case A	Case B	Case C	Case C2	Case C3
Partial load factors (γ_F)		(UPL)	(STR)	(GEO)	(EQU)	(HYD)
Permanent unfavourable action	ΥG	1.00	1.35	1.00	1.35	1.00
Variable unfvaourable action	Yo	1.50	1.50	1.30	1.50	1.20
Permanent fvourable action	YG	0.95	1.00	1.00	1.00	1.00
Variable favourable action	Yo	0	0	0	0	0
Accidental action	Ϋ́A	1.00	1.00	1.00	1.00	1.00

- Values in red are partial factors either given or implied in ENV version of EC7
- Values in green are partial not in the ENV that may be in the EN version

Table 2 (Cont.)

Parameter	Factor	Case A	Case B	Case C	Case C2	Case C3
Partial material factors (γ_m)		(UPL)	(STR)	(GEO)	(EQU)	(HYD)
Tan ¢'	Y _{tané} ,	1.10	1.00	1.25	1.00	1.20
Effective cohesion c'	Ye'	1.30	1.00	1.60	1.00	1,20
Undrained shear strength C _u	Yeu	1.20	1.00	1.40	1.00	1.40
Compressive strength qu	Υ _{ανι}	1.20	1.00	1.40	1.00	1.40
Pressuremeter limit pressure p _{lim}	Yplim	1.40	1.00	1.40	1.00	1.40
CPT resistance	YCPT	1.40	1.00	1.40	1.00	1.40
Unit weight of ground y	γ ₂	1.00	1.00	1.00	1.00	1.00

- Values in red are partial factors either given or implied in ENV version of EC7
- Values in green are partial not in the ENV that may be in the EN version

Table 2 (Cont.)

Parameter	Factor	Case A	Case B	Case C	Case C2	Case C3
Partial resistance factors (γ_R)		(UPL)	(STR)	(GEO)	(EQU)	(HYD)
Bearing resistance	YRV	_*	1.00	1.00	1.40	1.00
Sliding resistance	Yrs	_*	1.00	1.00	1.10	1.00
Earth resistance	YRe	_ *	1.00	1.00	1.40	1.00
Pile base resistance	γ _b	<u>*</u>	1.00	1.30	1.30	1.00
Pile shaft resistance	γ _s	<u>*</u>	1.00	1.30	1.30	1.00
Total pile resistance	γ _t	_ž	1.00	1.30	1.30	1.00
Pile Tensile resistance	γ _{st}	1.40	1.00	1.60	1.40	1.00
Anchor pull-out resistance	γ _A	1.30	1.00	1.50	1.20	1.00

- Values in red are partial factors either given or implied in ENV version of EC7
- Values in green are partial not in the ENV that may be in the EN version
- Partial factors that are not relevant for Case A

Serviceability Limit State Calculations (SLS)

 Table 3 – Serviceability limits

		Effect on		
Crack width mm	Dwelling	Commercial or public	Industrial	structure and building use
> 0.1	Insignificant	Insignificant	Insignificant	None
0.1 to 0.3	Very slight	Very slight	Insignificant	none
0.3 to 1	Slight	Slight	Very slight	Aesthetic only
1 to 2	Slight to moderate	Slight to moderate	Very slight	Accelerated weathering to external features
2 to 5	Moderate	Moderate	Slight	Serviceability of the building will
5 to 15	Moderate to severe	Moderate to severe	Moderate	be affected, and towards the
15 to 25	Severe to very severe	Moderate to severe	Moderate to severe	upper bound, stability may also be at risk
>25	Very severe to dangerous	Severe to dangerous	Severe to dangerous	Increasing risk of structure becoming dangerous

LIMIT STATE DESIGN – CHARACTERISTIC VALUE & DESIGN STRENGTH

CHARACTERISTIC STRENGTH OF A MATERIAL is the strength below which not more than 5% (or 1 in 20) samples will fail.

CHARACTERISTIC STRENGTH =MEAN VALUE – 1.64 X Standard DeviationDESIGN STRENGTH =CHARACTERISTIC STRENGTH f_μMATERIAL FACTOR OF SAFETYγm

EXAMPLE:

Ten concrete cubes were prepared and tested by crushing in compression at 28 days. The following crushing strengths in N/mm² were obtained:

44.5 47.3 42.1 39.6 47.3 46.7 43.8 49.7 45.2 42.7 Mean strength $x_m = 448.9 = 44.9 \text{ M/mm}^2$ 10 $= \sqrt{[(x-x_m)^2/(n-1)]} = \sqrt{(80/0)}$ Standard deviation $= 2.98 \text{N/mm}^2$ Characteristic strength $= 44.9 - (1.64 \times 2.98)$ $= 40.0 \text{ N/mm}^2$ **Design strength** = 40.0 = 40.0stress 40Nhmm sq 1.5 Ym 26.7Nhmm sa $= 26.7 \text{N/mm}^2$ strain

Fig 3

BICC	DING INDUSTRY	URSE	Job ref:					
	ULTATIVE	Part of Stru	icture	LUE DETERMINATION				
		Drawing Ref:	Done by: D	нс	Date: 05/02			
Ref	Calculations				Output			
	 The Characteristic Value of the angle of shearing resistance Ø'_{K is} required for a 10m depth of ground consisting of sand for which the following Ø'_K values were determined from 10 traxial tests: 33°, 35°, 33.5°, 32.5°, 37.5°, 34.5°, 36.0°, 31.5°, 37°, 33.5° To find the 95% confidence level, for soil properties, as only a small portion of the total volume involved in a design situation is tested, it is not possible to rely on Normal Distribution. For a small sample size the Student t value for a 95% confidence level may be used to determine that X_K value, given by 							
	$X_{\rm K} = X_{\rm m} \left[1 - \underline{tV} \right] = X_{\rm ho}$							
	\sqrt{n} \sqrt{n} Some typical values of V for different soil properties given by							
	Soil PropertyRange of typical V valuesRecommended V Value if limited Test results available							
	tan¢'	0.05 - 0.15	0.10					
	<u>c'</u>	0.30 - 0.50	0.40					
	Cu	0.20 - 0.40	0.30					
	$\mathbf{m}_{\mathbf{v}}$	0.20 - 0.70 0.01 - 0.10	0.40					
	γ (unit weight)	0.01 - 0.10	0					

BIC(BUII	ICC Project UILDING INDUSTRY FOUNDATION CPD COURSE						
CON COU							
Ref	Calculations	Drawing Ref: Done I	by: DHC	Output			
	Average angle of s With a Standard I Coeff of variation Student t for a 95	$\sigma_{AV} = 34.4^{\circ}$ $\sigma_{AV} = 1.97^{\circ}$ $V_{AV} = 0.057$					
	with 10 test resul	ts	= 2.26				
	$Ø'_{\rm K} = 34.4 - 1.4$.97 X 2.26 / √10	= 33.0 °				
	The Design Value $X_D = X_k / \gamma_m$ Applying the $\gamma_m = 1.25$ for Case C in Table 2 $\emptyset'_c = \arctan(\tan \emptyset'_K) / 1.25 = 27.8^\circ$						

The t values are given in Table 4

			Level of certainty								
		80%	90%	95%	99%	99.9%					
	<u>† </u>	3.078	6.314	12.706	63,657	636.619					
	2	1.886	2.920	4.303	9.925	31.598					
	3	1.638	2.353	3.182	5.841	12.941					
	4	1.533	2.132	2.776	4.604	8.610					
	5	1.476	2.015	.2.571	4.032	6.859					
	6 7	1.440	1.943	2.447	3.707	5.959					
	7	1.415	1.895	2.365	3.499	5.405					
	8	1.397	1.860	2.306	3.355	5.041					
	9	1.383	1.833	2.262	3.250	4.781					
	10	1.372	1.812	2.228	3.169	4.587					
	11	1.363	1.796	2.201	3.106	4.437					
	12	1.356	1.782	2.179	3.055	4.318					
E '	13	1.350	1.771	2.160	3.012	4.221					
Ē	14	1.345	1.761	2.145	2.977	4.140					
		1.341	1.753	2.131	2.947	4.073					
of freedo di libertà	16	1.337	1.746	2.120	2.921	4.015					
- ਵ- ਦ	17	1.333	1.740	2.110	2.898	3.965					
5 5	18	1.330	1.734	2.101	2.878	3.922					
8. 	19	1:328	1.729	2.093	2.861	3.883					
Degrees of freedom (df) Gradi di libertà (df)	20	1.325	1.725	2.086	2.845	3.850					
ð	् 21	1.323	1.721	2.080	2.831	3.619					
	22	1.321	1.717	2.074	2.819	3.792					
	23	1.319	1.714	2.069	2.807	3.767					
	24 25	1.318	1711	2.064	2.797	3.745					
	25	1.316	1.708	2.060	2.787	3.725					
	26	1.315	1.706	2.056	2.779	3.707					
	27	1.314	1.703	2.052	2.771	3.690					
:	28	1 313	1.701	2.048	2.763	3.674					
ļ	29	1.311	1.699	2.045	2.756	3 659					
	30	1.310	1.697	2 042	2.750	3.646					
	40	1 303	1.684	2 021	2.704	3.551					
	60	1:296	1.671	2.000	2.660	3.460					
	120	1.289	1.658	1.980	2.617	3.373					
,	∞	1.282	1.645	1.960- ↓	2.576	3.291					

Basic Cohesive Soil Founding Pressures

- Shallow Foundation occurs when founding depth (D) is less than width (B)
- D/B < 1 or when d<3m (may not be applicable for rafts) For undrained conditions, the base resistance q_B per unit area
- Shallow foundation $q_B = 5c_u + \gamma_s D$
- Deep foundation $q_B = 9c_u + \gamma_s D$
- For the general soil type use the EC7 Brinch-Hansen equation.

	Project				Job ref
ITI	Part of Structure	Tas-Sellu	m Apa	tment Bik.	Sheet No.
		Landhune	-	ronnda t	PO 1/2
men	Drawing /et	Done by: DHC	to Et	ched By:	Date Date
BICC			-		03/05
Ret	Calculations	the second second	_	Section and the	Output
	ROOF LOADI	NG			200
			1.35		
	Concrete sla	b 0.15.24kN/m ³	=>	4.86kN/m ²	
	Roofer syste	m 0.15.18kN/m ³	15	3.65kN/m ²	
	u	1.5kN/m ²	=>	<u>2.25kN/m²</u> 10.75kN/m ²	
	APARTMEN	T FLATS			
	1000		1,35		
	Concrete sla	ib 0.18.24kN/m ³	=>	5,83kN/m ²	
	Finish	0.10.18kN/m ³	=>	2.43kN/m ²	
	LL	1,5kN/m ²	=> 1.35	2.25kN/m ²	
	Partitions	4.5kN/m ²	=>	6.08kN/m ² 16.60kN/m ²	
	GARAGE F				
	and the second second		1.35		1.0
	Concrete sla	ib 0.15.24kN/m ³	=>	4.86kN/m ²	100
	Finish	0.1 .18kN/m ³	=>	2.43kN/m ²	
	LL	2.5kN/m ²	*>	<u>3.75kN/m²</u> 11.05kN/m ²	
	DOMESTIC	STORAGE	15		
	LL	2.75m.2.4kN/m ²		9.9kN/m ²	
	Ultimate cha 10.75kN/m ² . + 11.05kN/s => 2303kN/r => 19.942kN				

	Project	Job ref:
	Tas-Sellum Apartment Blk.	Sheet No.
	Founding Pressures to Eurocode VII	PO 2/2
BICC	Drawing ref: Dane by: DHC Child By:	Date 03/05
Ref:	Calculations	Output
	$f_b \Rightarrow 19,942$ kN / 6m.27m $\Rightarrow 123$ kN/m ² for a stiff to very stiff clay characteristic $c_u \Rightarrow 150$ kN/m ²	
	$q_{cher} = 5C_{m} + \chi d$	Class B
	1.4	(STR)
	= <u>5.150</u> + 20.1.5m 1.4	
	=> 565kN/sqm > 123kN/sqm	
	Foundation Settlement due to the adjusted elasticity method	Eurocode VII Appendix F
	S = pBf/Em	1.00
	P => f/1.4 => 123kN/m ² / 1.4 => 87.85kN/m ²	
	E _m / c _u => 300	
	Em => 300 x 150kN/m ² => 45,000kN/m ²	
	f= 0.86 (for a square rigid foundation)	10
	& Poisonn's ratio => 0.3	
	S => 87.85, 6.0.86 / 45,000 => 10mm	
	Which settlement is less than allowable	
	at 50mm, although total allowance	
	settlements in clay at 75 - 125mm also quoted	Sec. 5 55

MALTESE CLAYS CHARACTERISTICS

Referring to Mr. A. Cassar A&CE, from various insitu tests carried out using SPT and laboratory tests on recovered samples, Maltese clays may be described as stiff to very stiff in its natural state, having an average C value of 100KN/m², with a lower limit of 50 and an upper limit of 200.

Also the plastic limit (PL) of clay is given at 23%, with the liquid limit (LL) at 70% (Bonello 1988). The plasticity index (PI) is thus given by PI = LL – PL = 47%

MALTESE CLAYS CHARACTERISTICS continued

From the Casagrande plasticity chart this is classified as an inorganic clay of high plasticity.
 From BS 8004 table 1, stiff clays have a presumed alloweable bearing value of 150 to 300KN/m², whilst very stiff clays have values varying from 300 to 600 KN/m².

For a PL at 23% and a high clay content, the shrinkage and swelling potential of Maltese clays is classified at high, usually showing cracks on drying.

Blue Clay Formation Mineralogic Composition

Clay type	Water Content (%)	Undrained shear str kPa	Liquid limit %	Placticity limit %	Illite %	Kaolinite %	Chlorite %	Smectite %
Blue Clay	36.0	137	78	31	13.0	30	0	57
Lon- don clay	29.0	345	89	32	31.5	24.5	3	41

Maximum burial depth: Blue clay: c 400m London Clay: c500m

Source: Saviour Scerri - geologist

Blue Clay – Geotechnical characteristics

Sample Depth m	Moisture Content	LL	PL	PI	LI	Soil Class	Bulk Weight	Dry Weight	Lateral Press	C _u – KN/m ²
4.00	36	77	29	48	0.15	€V	1.90	1.40	80	243
8.50	33	71	26	45	0.16	CV	1.91	1.44	170	251
5.20	33	74	25	49	0.16	CV	1.92	1.44	104	266
8,80	34	74	28	46	0.13	CV	1.92	1.45	176	334
1.00	32	72	27	45	0.11	CV	1.91	1.45	20	285
5.50	33	76	27	49	0.12	CV	1.90	1.43	110	305
1.00	30	69	27	42	0.07	СН	1.95	1.49	20	415
5.50	33	74	26	48	0.15	CV	1.91	1.46	110	342

Source: Saviour Scerri -geologist

Blue Clay Formation

- Blue Clay has a high clay content
- Shrinkage due to desiccation is high and may reach 3m in depth
- Deep cracks are produced
- Clay loses all its cohesion
- Subsequent saturation produces clay slips

Preparing A Clay Founding Layer

- In order to eliminate seasonal ground movement (heave or shrinkage) a min. foundation depth of 0.9m is suggested
- When constructing foundations in very dry weather, care must be taken to ensure superstructure loads are applied as soon as possible
- Foundations are to be placed at a sufficient distance from trees. To reduce above damage due to subsidence or heave, foundations should be placed at a distance away of 0.5H, being the mature tree height.
- For trees such as the poplar, oak, elm, willow and eucalyptus the distance should be doubled to H

	Project	Job ref:
ITT	Tas-Sellum Apartment Bik.	
	Part of Structure	Sheet No.
<u></u> ,	Raft design to Eurocode II	PO 3/2
BICC BUILDING INDUSTRY CONMUTATIVE COUNCIL	Drawing ref: Done by: DHC Child By:	Date 03/05
Ref:	Calculations	Output
	$BM => (123kN/m^2 - 9.9kN/m^2).6^2/8$	
	=> 509kN - m/m	h => 250 + 40
		+ 10
	span/d => 24 d => 6000/24 => 250mm	=> 300mm
	y => M/bd ² .f _{ck} - use concrete C25/30	d => 450 -
	,	40 - 10
	$=> 509 / 1.400^2.25 => 0.127 (\mu_{lim} => 0.167)$	=> 400mm
	$W \implies A_{s} \cdot \frac{f_{yk}}{f_{eu}} \implies 0.168$ (W _{lim} => 0.2336)	
	$A_s => 3,652 \text{ mm}^2/\text{m}$	
	The Shear Resistance with no axial load	
	$V_{Rd1} \Rightarrow \tau_{Rd} k (1.2 + 40 \ell_t) bd$	1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -
	$T_{RD} => 0.3N/mm^2 k => 1.6 - d => 1.2 \le 1$	
	$C_t \Rightarrow 3,652/1.400 \Rightarrow 0.00091$	
	$V_{Rd1} \Rightarrow 0.3 \times 1.2 (1.2 + 40.0 \times 0091) 1.400$ => 225 kN/m	
	$V => (123kN/m^2 - 9.9kN/m^2) (6m - 0.25m)$	
	=> 311kN/m (shear links to be provided)	

	Project	Job ref:
	Tas-Sellum Apartment Blk.	
	Part of Structure	Sheet No. PO 4/2
BICC	Raft design to BS 8110 Drawing ref: Done by: DHC Chkd By:	Date 03/05
Ref:	Calculations	Output
and the second	BM => 509kNm/m x 1.45 / 1.4 => 527kNm/m	
	$k => M/bd^2 f_{cu} => 527 / 1.400^2 .30 => 0.11$	1
	$a_1 \Rightarrow Z/d \Rightarrow 0.86 Z \Rightarrow 0.86 x 400 \Rightarrow 344mm$	
	$A_s \implies M/(0.87f_y) \not\equiv => 527/(0.87 \times 460 \times 344) \implies 3,828 \text{mm}^2/\text{m}$	
	v => $(123kN/m^2 - 9.9kN/m^2) \times \frac{1.45 \times (6m - 0.25m)}{1.4 \times 2}$	
	=> 322kN/m	
	$v => 322 / 1.400 => 0.8 N/mm^2$	
	C=> 3,828 / 1.400 => 0.96%	
	$v_{c} => 0.67 \text{N/mm}^{2}$	
	so increase C to 1.75% V _c => 0.8N/mm ²	
	As reg => 7000mm²/m (Y32 @ 115mm centreline)	
	Commentary :-	
	Thus EC2 is more economical on tensile	
	steel (3,652mm ² /m as against 3,828mm ² /m),	
	however, shear links are to be included	
	as per EC2, whilst BS 8110 has the	
	possibility of increasing steel area to	
	7,000mm ² /m and providing no shear links.	1.1.1.1

ent Bik.	
Sheet No.	-
ral walling PO 5/2	
hkd By: Da	ate /05
Quit	tput
CENTRAL WALLING	N I
22crs x 1.35kN/m/fil) 1.35	
(123kN/m ²	9.9kN/n
123kN/m/2	
mm²/m)	

Constructing a Raft Foundation

- Raft foundations should be placed on fully compacted draining infill separated by a polythene sheet not exceeding 1.0m in depth. The raft and fully compacted fill tend to act compositely in resisting the heave forces. Heave movement is reduced by removing the most desiccated clay layer.
- For protection against the possibility of future tree planting producing damaging ground movement the bored pile foundation is more suitable. The upper part of the pile shaft in the clay desiccation zone should be sleeved to reduce uplift selling forces

Heaving pressures in clays may be up to 200KN/m²

	Project	Job ref:
	Tas-Sellum Apartment Blk.	Sheet No.
		Reason Area II
	Pile design in clay material	PO 6/2
BICC BULLAING INDISTRY ONSULTATIVE COUNCIL	Drawing ref: Done by: DHC Chkd By:	Date 03/05
Ref:	Calculations	Output
	For undrained conditions, it is assumed	
	that the base resistance is given by	1
	$(9C_u + \sigma_v) / 1.5$	-
	=> (9.150kN/msq + 20kN/cum x L) / 1.5	
	=> 900kN/m ² + 13.33 ℓ	
	the shaft resistance is given by	
	$\propto C_u / 1.5 \Rightarrow$ where $\propto \Rightarrow 0.4$	
	=> 0.4 x 150 / 1.5 => 40kN/msq	27 27 3
	if piles are assumed at 4.5m ¢	
	N => (19,942 / 2 in No x 27m) x 4.5m => 1,661kN/pile	
	$1,661$ kN => 900 Trx 1 ² /4 + 40 x (T1) ℓ + 13.33 ℓ Trx 1 ² /4	
	l => 7.00m	21
	say 8.0m depth to cater for top 1.0m disturbance	

62	Tas-Sellum Apartment Bik.	Job rot:
	Part of Structure	Sheet No.
듣니	Piling in Rock	PO 7/2
BICC	Drawing ref Done by DHC Child By	Dete 03/05
Ref:	Calculations	Output
	Assume that a soft rock formation is	Ret-
	encounted 6.0m below surface.	Foundations
	The Pile will be socketed in rock for a	on Rock
	depth of 1,5m and the above clay adhesion	DC Wyllie
	ignored.	
	Considering end-bearing only N _{ULT} => O _{ur} x T(B ² / 4	
	-> 1,800kN/msq x 7Tx 1 ² /4 => 1,413kN	
	Side wall shear resistance $\tau_{ult} \Rightarrow 0.5 \sqrt[4]{\sigma_u}$	
	Management Content of the second second	
	=> 0.5 V 1800 => 670kN/msq	
	Que => Tuex TIBL	
	> 670kN/msq x Tfx 1 x 1.5 => 3155kN	
	the % of load taken in end bearing	
	varies from 30% to 50%	
	NULT => 1413kN + 1413kN x 2 => 4239kN	
	N _{ULT} /Y _m => 4239kN/1.5 => 2826kN/pile	
	this pile spacing increases to	
	2826kN / 1,661kN x 4.5m => 7.5m centres	2 P 6 2 2 2 1
	or go for 600mm diameter pile	
	spacing at 4.0m centres	
	above reference gives a calculation for	
	settlement which works out at 3mm	

Indirect Design Methods

- This is the traditional method used in most countries. In this method calculations are carried out at characteristic stress levels (CP 2004 – table 1 enclosed) with unfactored load and ground parameters.
- Although EC7 does not provide provision for this method, it is expected to be included in the revised version.
- Foundations on rock applicable to this method, although Annex G of EC7 gives presumed bearing resistances dependant on the rocks compressive strength and discontinuity spacing.

Foundation Settlement EC7 – Appendix F

- Adjusted elasticity method s= pBf/E_m (cohesive & non-cohesive)
- p is elastic bearing pressure linearly distributed
- f is the settlement coefficient?
- E_m is the soil modulus of elasticity
- Appendix H outlines structural deformation & foundation movement

ALLOWABLE SETTLEMENTS & ROTATIONS

- For normal structures with isolated foundations total settlements up to 50mm acceptable. A max relative rotation of 1/500 acceptable for most structures, given in EC7.
- Other sources' max raft total settlement of clay up to 125mm with differential settlements of 45mm acceptable. For sand, total given at 50mm and differential at 30mm.
- Isolated foundations max. deflection on clay given at 75mm (sand 50mm).
- Brick buildings total settlement quoted at 75-100mm. Angular distortion of 1/300 also quoted.