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Material Ultimate Modulus of Density | Coeff of Embodied Energy Material
Stress Elasticity (KN/m?) | Thermal MJ/kg Factor of
(N/mm?) | (N/mm?) Expansion | g podied cO,) | S

*10-6/°C (kg/t) ym

Mild steel 275 205000 70 10.8 35(2030) 1.0

High Yield steel | 460 200000 70 10.8 35(2030) 1.0

Pre-stressing 1570 200000 70 35(2030) 1.15

wire

Reinforced 20-60 28000 24 10.8 8(203) 1.5

concrete

Timber:

Softwood 10-30%** 7000%* 6 3.5%* 2(1644) ].3#*

Hardwood 35-70%** 12000%** 3.5%* 3(2136)




The principles of partial safety factors was proposed in 1927,
by the Danish Moe.

An early example of the result of this work is in a British
standard CP110. Any condition that a structure might
attain, which contravened the basic requirement was
designated a Limit State. The most important innovation in
CP110 was the explicit use of probability theory in the
selection of “characteristic” values of strength which —
according to some notional or measured distribution — would
be exceeded in at least 95% of standardised samples.




CHARACTERISTIC STRENGTH OF A
MATERIAL is the strength below which not
more than 5% (or 1 in 20) samples will fail.




EXAMPLE:

Ten concrete cubes were prepared and tested by crushing in
compression at 28 days. The following crushing strengths in N/mm?
were obtained:

44.5 47.3 42.1 39.6 47.3 46.7 43.8 49.7 45.2 42.7

Mean strength x = 448.9 = 44.9N/mm?
10
Standard deviation = V[(x-x,)*(n-1)] = V(80/0)
= 2.98N/mm?

Characteristic strength = 44.9 — (1.64 X 2.98)




Relative
specific strength

— -8

Steel Concrete Timber Aluminium Masonry Fibre
composite

Figure 4

Design strength per unit weight for
Structural materials

(Source : D. Seward (Understanding
Structures)
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unit
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Steel Concrete Timber Aluminium Masonry Fibre
composite

Figure 5
Relative cost of structural material per unit of

stress carried
Source : D Seward (Understanding Structures)
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Relative
specific modulus

Steel Concrete Timber Aluminium Masonry Fibre

Fig 6

Modulus of elasticity per unit weight
for structural materials

(Source: D. Seward (Understanding
Structures)

composite
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Art galleries 4.0
Banking halls 3.0
Bars 5.0
Car parks 2.5
Classrooms 3.0
Churches 3.0
Computer rooms 3.5
Dance halls 5.0
Factory workshop 5.0
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DESIGN DEAD LOAD = 1.4*600KN = 840kN
DESIGN LIVE LOAD = 1.6*450KN = 720KN
TOTAL DESIGN LOAD = 1560KN

Characteristic Compressive strength of franka = 7.5N/mm?




© Deﬂection}
® Vibration & design checks

® Cracking — detailing
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DErLECTION LIMITS TO STEELWORK EC
Conditions Limits
0 max 0 2

Roofs generally L/250 L/250
Roofs frequently carrying personnel other than for maintenance L/250 L/300
Floors generally L/250 L/300
Floors supporting plaster or other brittle finish or non-flexible L/250 L.350
partitions

Floors supporting columns (unless the deflection has been L/400 L/500




Fig 7 — Deflection limits

0, - deflection due to pre-camber
0, _deflection due to dead load
0, _deflection due to live load
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I'he fundamental frequency of floors in
dwellings and offices (EC3) should not be less
than 3 cycles/second. This may be deemed to be
satistfied when 0, + 0, (see Fig7) < 28mm.

(b) The fundamental frequency o floors used for
dancing and gymnasia EC3 should not be less
than 5 cycles/second. This may be deemed to be

(a)




Inexact design theory leads to a wider spread in the
failure loads and an even higher mean weight.

. Percentage v '
of structuresl "Exact theory  Mean weight

tested ali structures  must be higher -

_ cargr exact § |

100% | reqmred Appmxlmate theory
More
approximate

~ "'-..\ theory

Required Stmcﬂn'al weight
include not more failure

- than 1% of load
test values

Fig 8
Statistical effect of design inaccuracy
Source: Bolton :Design Codes 2002
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Glass in panes can deflect by more than its own thickness. This
takes designers into the realm of large deflection theory,
when the pane deflects by more than 2 its thickness

80 - Simple deflection
theory

" 80 -

'‘Quoted’

30

Large
deflection
‘Real' theory

Stress (N'mm?)

Design pressure

1000 2000
Uniform pressure (N/m2)

Fig 11 A comparison of small and large deflection
Theory




The panel is 2.0m X 0.75m SS on 4 edges on a neoprene
bedding on a steel angle. Assume a 19mm sheet of annealed
glass subjected to a

LL of 4KN/m?* X 1.6 = 6.4KN/m?
DL of glass = 0.019mm X 25KN/m? X 1.4= 0.665KN/m?
Ratio of sides =2/0.7S 2.67 from which o _=0.122 (Table 7)

BM =o_.wlL? BM.. =ao.WI?




BM,,; = 0.122 X 0.665 X 0.75*=0.033KN - m/m

BM,, = 0.122X 6.4 X0.75* =0.44 KN-m/m

f .. =BM/Z (Z =bd?*6)

fyr = 6 X 0.033/0.019% = 548KN/m? (0.548N/mm?)< 7N/mm?
fi; =6X0.44 /0.019? = 7313KN/m? (7.313N/mm?)<17N/mm?
Deflection Check




