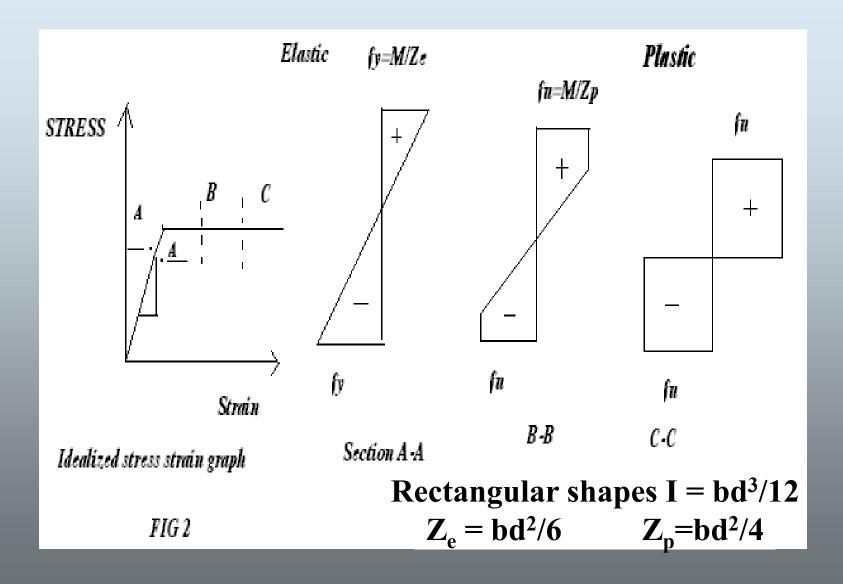

INTRODUCTION TO STRUCTURAL MATERIALS & METHODS


WITH REFERENCE TO CONCRETE, STEEL, MASONRY TIMBER & GLASS

DENIS H. CAMILLERI dhcamill@maltanet. net BICC CPD 5/12/02 STRUCTURAL DESIGN FOR THE SMALL PRACTICE

DUCTILE & BRITTLE MATERIALS

Plasticity demonstrated by flat portion Brittle failure is sudden without a flat portion

Table 1

Material	Ultimate Stress (N/mm ²)	Modulus of Elasticity (N/mm ²)	Density (KN/m ³)	Coeff of Thermal Expansion *10 ^{-6/0} C	Embodied Energy MJ/kg (Embodied CO ₂₎) (kg/t)	Material Factor of Safety γm
Mild steel	275	205000	70	10.8	35(2030)	1.0
High Yield steel	460	200000	70	10.8	35(2030)	1.0
Pre-stressing wire	1570	200000	70		35(2030)	1.15
Reinforced concrete	20-60	28000	24	10.8	8(203)	1.5
Timber: Softwood Hardwood	10-30** 35-70**	7000** 12000**	6	3.5** 3.5**	2(1644) 3(2136)	1.3***
Franka Masonry	7.5	17000	20	4.0	2(32)	2.5-3.5
Aluminium Alloy	255	70000	24	23.0	300(17000)	1.2
Glass fibre composite	250	20000	18		100(8070)	1.7
Float glass	7(28)*	70000	25	8.3	15(1130)	1.0
Toughened glass	50(56)*	70000	25	8.3	20(1130)	1.0
* Gust loading;	** Parallel	to gram; ***E	C5 - Timber			

European Model Codes in the 60s and 70s

- The principles of partial safety factors was proposed in 1927, by the Danish Moe.
- An early example of the result of this work is in a British standard CP110. Any condition that a structure might attain, which contravened the basic requirement was designated a Limit State. The most important innovation in CP110 was the explicit use of probability theory in the selection of "characteristic" values of strength which – according to some notional or measured distribution – would be exceeded in at least 95% of standardised samples.
- In 1978 the Nordic Committee on Building Regulations (1978) issued a report on Limit State Design containing "Recommendation for Loading and Safety Regulations of Structural Design" – NKB report No 36.
- It introduces a concept of Structural Reliability dealing in safety and control class

LIMIT STATE DESIGN – CHARACTERISTIC VALUE & DESIGN STRENGTH

CHARACTERISTIC STRENGTH OF A MATERIAL is the strength below which not more than 5% (or 1 in 20) samples will fail.

CHARACTERISTIC STRENGTH =MEAN VALUE – 1.64 X Standard DeviationDESIGN STRENGTH =CHARACTERISTIC STRENGTH f_{u} MATERIAL FACTOR OF SAFETY γ_{m}

EXAMPLE:

Ten concrete cubes were prepared and tested by crushing in compression at 28 days. The following crushing strengths in N/mm² were obtained:

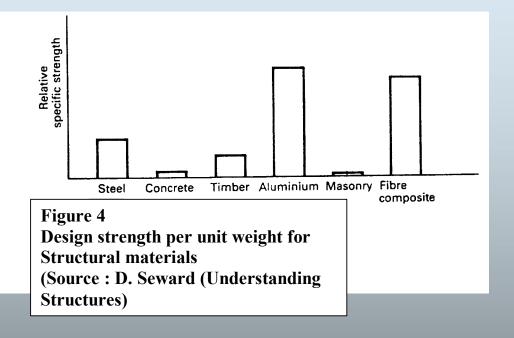
44.5 47.3 42.1 39.6 47.3 46.7 43.8 49.7 45.2 42.7 Mean strength $x_m = 448.9 = 44.9$ N/mm²

Standard deviation

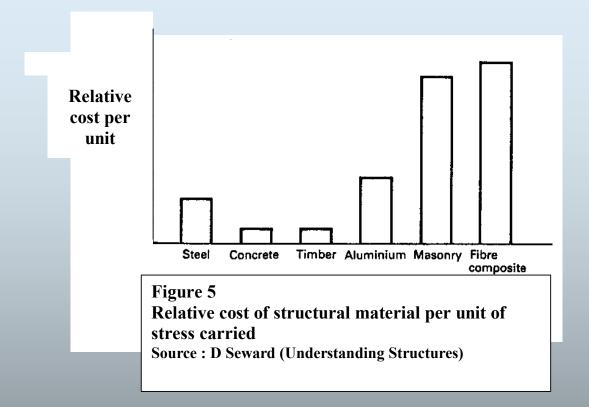
10 $= \sqrt{[(x-x_m)^2/(n-1)]} = \sqrt{(80/0)}$ $= 2.98 \text{N/mm}^2$


1.5

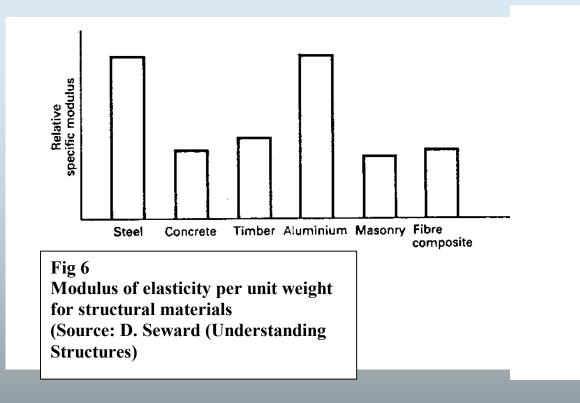
Characteristic strength = $44.9 - (1.64 \times 2.98)$


Design strength = 40.0 = 40.0γm

 $= 26.7 \text{N/mm}^2$


 $= 40.0 \text{ N/mm}^2$

MATERIAL PROPERTIES (Ref Ashby & Jones; Engineering Materials 1980)


The weight of a building is usually greater than its contents. If the structure is made lighter, structural members become smaller. Weight, however, can be useful to resist wind loads.

Labour costs are ignored and some materials may require fire protection.

Table 2 – Slope and Deflexion Coefficients

	Turne of basers and landing	Max.	Max.	Factors		
BM _{max}	M _{max} Type of beam and loading		deflexion	Slope	Deflexion	
М		1	$\frac{1}{2}$	MI	Ml² EI	
М	м()м	1 2	$\frac{1}{8}$	EI .		
WL	¥w	- <u>1</u> 2	1 3			
WL ² /2		1 6	1 	Wl²	Wl ³	
WL/4		$\frac{1}{16}$	$\frac{1}{48}$	EI	ĒI	
WL ² /8		$\frac{1}{24}$	5 384			

With many structures, the design is limited by excessive deflections rather than strength, making specific modulus important

LOADS & LIMIT STATE DESIGN

 G_k = characteristic dead load Q_k = characteristic imposed load W_{k} = characteristic wind load Partial safety factors for loads, y_f Design load = characteristic load $X \gamma_f$

Load Combination	Dead	Imposed	Wind
Dead and imposed	1.4* or 1.0	1.6*	-
Dead and wind	1.4 and 1.0	-	1.4
Dead and imposed and wind	1.2	1.2	1.2

Loads from liquids and earth pressure use the same factors as dead loads

IMPOSED LOADS

Table 4

Art galleries	4.0
Banking halls	3.0
Bars	5.0
Car parks	2.5
Classrooms	3.0
Churches	3.0
Computer rooms	3.5
Dance halls	5.0
Factory workshop	5.0
Foundries	20.0
Hotel bedrooms	2.0
Museums	4.0
Offices (general)	2.5
Offices (filing)	5.0
Private houses	1.5
Shops	4.0
Theatres (fixed seats)	4.0

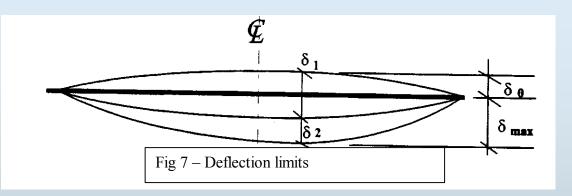
Based on BS 6399: Part 1:1996

Table 5 - Wind Pressure for the Maltese Islands in KN/m² for various building heights & terrains for a basic wind speed of 47m/s, where the greater horizontal or vertical dimension does not exceed 50m, as per CP3:ChV.

<i>H</i> – <i>m</i>	Sea front with a long fetch		Countryside with scattered wind breaks		Outskirts of towns and villages		Town centers	
		cladding		cladding		cladding		cladding
3 or less	1.05	1.12	0.90	0.97	0.81	0.86	0.70	0.76
5	1.12	1.19	1.00	1.07	0.88	0.95	0.74	0.81
10	1.28	1.35	1.19	1.26	1.00	1.05	0.84	0.90
15	1.34	1.39	1.28	1.35	1.12	1.19	0.93	1.00
20	1.36	1.43	1.32	1.39	1.22	1.28	1.01	1.07
30	1.42	1.47	1.39	1.44	1.31	1.36	1.15	1.21
40	1.46	1.51	1.43	1.48	1.36	1.42	1.26	1.31
50	1.49	1.54	1.46	1.49	1.40	1.46	1.32	1.38

For Structural Eurocodes, 90% of the above values to be used

LIMIT STATE DESIGN OF MASONRY COLUMN


DESIGN DEAD LOAD = 1.4*600KN = 840kN DESIGN LIVE LOAD = 1.6*450KN = 720KN TOTAL DESIGN LOAD = 1560 KNCharacteristic Compressive strength of franka = 7.5N/mm² Design Stress = Characteristic value / γ_m $= 7.5 \text{N/mm}^2/3 = 2.5 \text{N/mm}^2$ AREA OF COLUMN = 1560KN/2.5N/mm² $= 0.625 \text{m}^2$

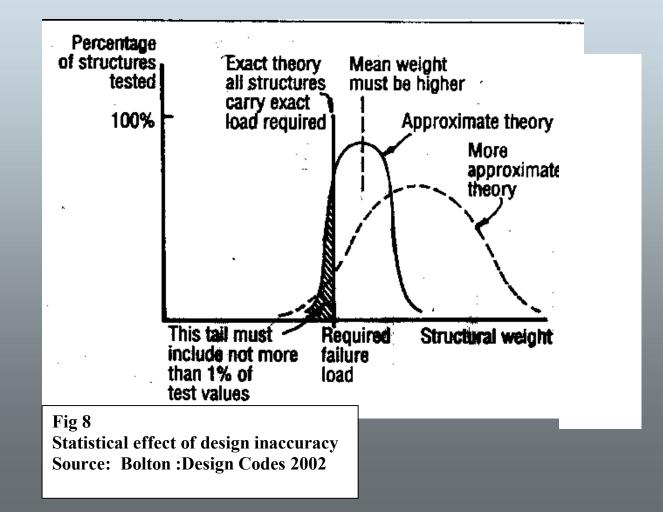
SERVICEABILITY LIMIT STATE Loads factors taken as 1.0

- Deflection_}
- Vibration } design checks
- Cracking detailing
- Durability specification
- Fire Resistance the better the denser the material

DEFLECTION LIMITS TO STEELWORK EC 3 Table 6

Conditions	Limits			
	δ _{max}	δ2		
Roofs generally	L/250	L/250		
Roofs frequently carrying personnel other than for maintenance	L/250	L/300		
Floors generally	L/250	L/300		
Floors supporting plaster or other brittle finish or non-flexible partitions	L/250	L.350		
Floors supporting columns (unless the deflection has been included in global analysis for the ultimate limit state)	L/400	L/500		
Where δ can impair the appearance of the building	L/250			

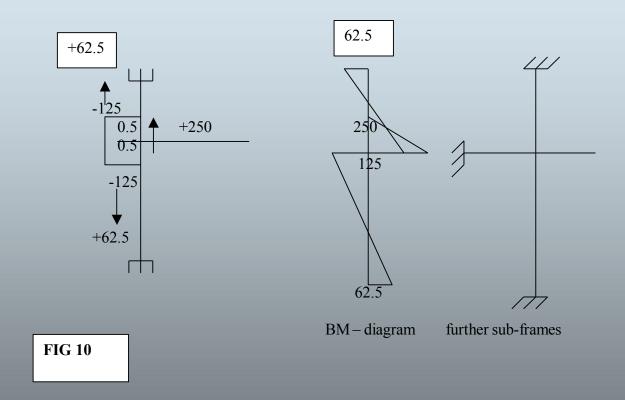
$$\begin{split} &\delta_{o} = \text{deflection due to pre-camber} \\ &\delta_{1} = \text{deflection due to dead load} \\ &\delta_{2} = \text{deflection due to live load} \\ &\text{Timber deflection on live load is to be limited} \\ &\text{to } L/300 \end{split}$$

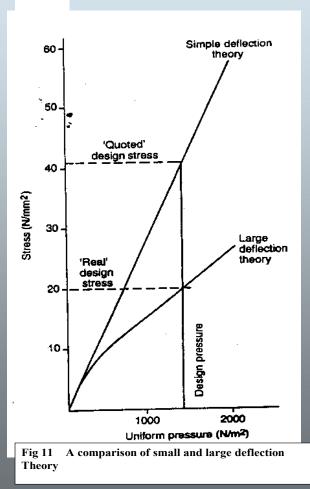

Concrete calculated on span/depth ratios

Vibration to EC3 (steelwork) & EC5 (timber)

- (a) The fundamental frequency of floors in dwellings and offices (EC3) should not be less than 3 cycles/second. This may be deemed to be satisfied when $\delta_1 + \delta_2$ (see Fig7) < 28mm.
- (b) The fundamental frequency o floors used for dancing and gymnasia EC3 should not be less than 5 cycles/second. This may be deemed to be satisfied when $\delta_1 + \delta_2$ (see Fig 7) < 10mm.
- (c) For domestic timber floors (EC5), the fundamental frequency is to lie between 8Hz<f<40Hz, may be deemed to be satisfied when $\delta_1 + \delta_2 < 14$ mm (see Fig 7).

DESIGN THEORY


Inexact design theory leads to a wider spread in the failure loads and an even higher mean weight.


MOMENT DISTRIBUTION – HARDY CROSS METHOD $_{\text{KBA}} = \underline{0.75I} \quad \text{K}_{\text{bc}} = \underline{I}$ Fig 9 4 3 A 0.751 $\Sigma K = I$ 150KN 3т 2 B DF _{BA} = (0.75I) / I = 0.5I 41H (3)2 С $DF_{BC} = \underline{I} / \underline{I}$ 1.67 m 4 2

 $M_{\rm B} = 150 \text{KN} \cdot 1.67 = 250 \text{KN} \cdot \text{m}$

MOMENT DISTRIBUTION - continued

PRINCIPLES OF GLASS DESIGN Glass in panes can deflect by more than its own thickness. This takes designers into the realm of large deflection theory, when the pane deflects by more than ½ its thickness

Table 7 - ULTIMATE GLASS DESIGN STRESSES N/mm ²							
LOADING PERMANENT MEDIUM SHORT							
FLOAT	7	17	28				
TOUGHENED	50	53	56				

DESIGN EXAMPLE OF A FLOOR GLASS PANEL

- The panel is 2.0m X 0.75m SS on 4 edges on a neoprene bedding on a steel angle. Assume a 19mm sheet of annealed glass subjected to a
- LL of $4KN/m^2 \times 1.6$ = $6.4KN/m^2$
- DL of glass = 0.019mm X 25KN/m² X 1.4= 0.665KN/m²
- Ratio of sides = 2/0.75 2.67 from which α_{sx} =0.122 (Table 7)

$$\mathbf{B}\mathbf{M}_{xx} = \mathbf{\alpha}_{sx} \mathbf{W} \mathbf{l}_{x}^{2} \quad \mathbf{B}\mathbf{M}_{yy} = \mathbf{\alpha}_{sy} \mathbf{W} \mathbf{l}_{x}^{2}$$

Table 8

Bending moment coefficients for slabs spanning in two directions at right angles, simply supported on four sides

l_y/l_x	1.0	1.1	1.2	1.3	1.4	1.5	1.75	2.0	2.5	3.0
$\alpha_{\rm sx}$	0.062	0.074	0.084	0.093	0.099	0.104	0.113	0.118	0.122	0.124
$\alpha_{\rm sy}$	0.062	0.061	0.059	0.055	0.051	0.046	0.037	0.029	0.020	0.014

DESIGN EXAMPLE OF A FLOOR GLASS PANEL (continued)

- $BM_{DL} = 0.122 \text{ X} 0.665 \text{ X} 0.75^2 = 0.033 \text{ KN} \text{m/m}$
- $BM_{LL} = 0.122 X 6.4 X 0.75^2 = 0.44 KN m/m$
- $f_{max} = BM/Z \ (Z = bd^2/6)$
- $f_{DL} = 6 X 0.033/0.019^2 = 548 KN/m^2 (0.548N/mm^2) < 7N/mm^2$
- f_{LL} = 6 X 0.44 /0.019² = 7313KN/m² (7.313N/mm²)<17N/mm² Deflection Check
- $\triangle = 5wL^4/384EI$ (where I = bh³/12)
- $\triangle = 5 \times 4 \times 750^4 \times 12/384 \times 70 \times 10^6 \times 9^3 = 0.41 \text{mm}$
- This is significantly less than ½ the plate thickness, so simple bending theory is appropriate
- L/ $\triangle = 750/0.4 = 1875 > 175$