MASONRY CODES & STABILITY WITH REFERENCE TO EARTHQUAKE DETAILING

DH CAMILLERI dhcamill@maltanet.net BICC bicc@maltanet.net (Feb 2002)

MASONRY CODES

- ***BS 5628 pt 1 Design of Plain** Masonry
- BS 5628 pt Design of Reinforced & prestressed Masonry
- *****EC 6 ENV 1996-1-1 Rules for reinforced/

prestressed & unreinforced masonry

(EN Date due 2003/4)

EC 8 ENV 1998-1-1; 1996

Design Provisions for Earthquake Resistance of Structures

Contents of EC6

- Part 1: The design of masonry structures: General rules for buildings
- Part 2: Design, selection of materials and execution of masonry
- Part 3: Simplified calculation methods and simple rules for the design of masonry
- Part 10: Fire performance of masonry structures
- Of these, Part 1 is well advanced. Part 2 published 1998 and part 3 in 1999 as ENVs. Part 10 (now 1-2 published 1996) and part 1.3 on laterally loaded masonry are to be published with part 1 – 1, together with part 1-x: Complex shapes sections in masonry structures.

Scope of Part 1 – 1 of Eurocode 6

- Part 1- 1 of Eurocode 6, DD ENV 1996 –1-1, containing principles & rules of applications, gives a general basis for the design of buildings and civil engineering works in unreinforced, reinforced, prestressed and confined masonry made with the masonry units laid in mortar.
- Section 1 : General
- Section 2 : Basis of design (EC 1) Fundamental Combination $\xi \gamma_{G,i} G_{k,i}$ + $\gamma_{O,1} Q_{k,i}$ + $\xi \gamma_{O,1} Q_{k,i}$
 - $\begin{aligned} \xi \gamma_{Q,i} \ \Psi_{O,i} Q_{k,i} \\ i > 1 \end{aligned}$

Sum of factored Permanent loads Factored dominant variable load

Sum of other factored variable loads

Scope of Part 1 – 1 of Eurocode 6 (cont.)

- **Section 3 : Materials**
- **Section 4 : Design of masonry**
- Section 5 : Structural detailing (chases & recesses where essential should be placed within meth of storey height)
- **Section 6 : Construction**
- Unreinforced masonry does not usually require the consideration of the Serviceability Limit State, as satisfying the Ultimate Limit State usually avoids cracking and deflection problems. This is not so for Reinforced Masonry, when both the Ultimate and Serviceability Limit States need to be addressed

Table 1- Partial Safety factors γ_m characteristic

loading & materials strength for normal design loads.

Ultimate Limit State	BS	EC	
permanent load	1.4	1.35	γ _c
imposed load	1.6	1.50	

Material	Special	Category	Norma	al Category	BS 5628
	В	S		BS	
Masonry		(EC6/B)		(EC6/C)	
Compression	2.5	(2.8)	3.1	(3.5)	Pt1
Compression/flexure	2.0	(2.8)	2.3	(3.5)	Pt 2
Flexure	2.8	(2.8)	3.5	(3.5)	Pt1
Shear	2.5	(2.5)	2.5	(3.5)	Pt1
Shear	2.0	(2.8)	2.0	(3.5)	Pt 2
Bond	1.5	(2.0)	1.5	-	Pt2
Strength of steel	1.15	(1.15)	1.15	-	Pt 2
Wall ties	3.0	(2.5)	3.0	(2.5)	Pt 1

When considering the probable effects of misuse or accident, the values given should be halved. EC8 gives a γ_m of 1.7 and 2.0 for Categories B & C

Table 2 - Characteristic values of imposed loads on floors in buildings and Ψ values to EC1

Loaded areas	UDL	Conc.	Ψ	Ψ_1	Ψ_2
	(kN/M^2)	Load			
		(kN)			
Domestic	2.0	2.0	0.7	0.5	0.3
Offices	3.0	2.0	0.7	0.5	0.3
Assembly	4.0	4.0	0.7	0.7	0.6
With fixed seats	5.0	4.0	0.7	0.7	0.6
Storage	5.0	7.0	1.0	0.9	0.8
Wind			0.6	0.5	0.0

 $\psi_{Ei} = \phi \cdot \psi_{2i}$ (where ψ varies from 0.5 – 1.0 depending on occupancy)

STABILITY

FIG 1

THE EXTENT OF DAMAGE SHOULD NOT BE DISPROPORTIONATE TO ITS CAUSE

BS 5628 specifies the minimum lateral load at 1.5% of the total characteristic DL above that level.

EC6 gives this at 1% of the combined vertical characteristic dead and imposed load at the particular floor divided by √h tot
 Their effect may be ignored if less onerous than other horizontal actions eg. wind

ACCIDENTAL DAMAGE

For buildings with 5 storeys or more & clear spans exceeding 9.00m:

BS 5628 pt 1 - Table 12 - 3 options given:

- option 1 based on members being able to withstand a pressure of 34KN/m² in any direction
- option 3 prescribes horizontal & vertical ties as in BS 8110
- option 2 is a hybrid between options 1 & 3 where in masonry construction it may be difficult to provide vertical tying. Unless member defined as protected (can withstand pressure up to 34KN/m²) the effect of removing one vertical member at a time is to be considered.

TIEING PROVISIONS TO BS5628 pt 1

***** Vertical Tie the greater of :

 $T = (34A/8000) (h/t)^2 N$ or 100KN/m length

where A is the area in mm²

- Horizontal Tile in KN, is the lesser of:
 - $F_t = 20 + 4 N_s$ (where N_s is the no of storeys)

or 60 KN

Internal Ties in KN/m

 $f_t' = F_t \{ (G_k + Q_k)/7.5 \} X L_a/5$

External Wall or Column Tie in KN for columns & KN/m for walls is the lesser of

 $2F_t$ or (L/2.5) F_t

The tie force is based on shear strength or friction

SEISMIC ZONING

Table 3 – Return Periods for Earthquake Intensity of theMaltese Islands

MM – Earthquake	Return Period	Base Shear Design
Intensity	(years)	% of g
VI	333	2 –5
VII	1800	5 –10
VIII	100,000	10-20

Design grd. acceleration for a return period of [475] yrs (EC8) taken between 0.05g – 0.8g.
Defined as a low seismicity zone as <0.10g (EC8)
< 0.10g, but > 0.4g EC 8 provisions to be catered for

MASONRY DESIGN CRITERIA FOR ZONES OF LOW SEISMICITY (EC8) 1. Shear walls in manufactured stones units $t \ge [175]mm$ $h_{ef}/t \le [15]$

- 2. A min of 2 parallel walls is placed in 2 orthogonal directions. The cumulative length of each shear wall > 30% of the length of the building. The length of wall resisting shear is taken for the part that is in compression.
- 3. For a design ground acceleration < 0.2g the allowed no of storeys above ground allowed is [3] for unreinforced masonry and [5] for reinforced masonry, however for low seismieity a greater no allowed.
- 4. Mortar Grade (III), (M5) although lower resistance may be allowed. Reinforced masonry type IV (M10). No need to fill perp. Joints.

FIG 2 -Masonry Improved Sturdiness for Aseismic Design

Fig 3- Example of overcoming unsymmetrical requirements when large opening required on one side

Forming stiffening piers at [7] m centres

Crack width Classification

Category	Damage Extension	Action
0 No Damage	Hairline crack widths 0.1mm	No action needed
1 Light non-structural damage	Fine cracks on plaster. Typical crack widths up to 1 mm	Not necessary to evacuate the building.
2 Moderate structural damage	Small cracks on masonry walls. Generalized failures in non- structural elements such as cornices and chimneys. Typical crack widths up to 5mm.	Not necessary to evacuate the building. Ensure conservation, such as external re-pointing to and erasing/adjusting of sticky doors
3 Severe structural damage	Large and deep cracks, in masonry wall, chimneys, tanks, stair. The structure resistance capacity is partially reduced. Typical cracked widths exceed 15mm.	The building must be evacuated and shored. It can be re-occupied after retrofitting.
4 Heavy structural damage	Wall pieces fall down, interior and exterior walls break and lean out of plumb. Typical crack widths exceed 25mm.	The building must be evacuated and shored. It must be demolished or major retrofitting work is needed before being re- occupied.

FIG 4 - Accounting for Torsional Diaphragm effects

Calculated Torsion $M_1 = W_e$ $M_1 = W_e$ (distributed into thedistributed into 3 walls accordingorthogonal walls by coupleto angular rotation and displacement.action)

The distribution of the total base shear may be modified where the shear is neither reduced more than 30% or increased more than 50% (EC8)

EC6 states that due to reduced stiffness due to cracking 15% redistribution permissible.

BICC	Project STRUCTURAL RECIDITY CRD MASONRY	Job ref
Building	STRUCTURAL REGIDITT - CLD MASONKI	
Industry	Part of Structure: DISTRIBUTION INTO SHEAD WALLS	
Consultancy	Drawing ref: Done by DHC	Date: 02/02
Council	Done by Drie	Date: 02/02
Calculations		Output
OPEN FRON	FED BUILDINGS	
(frequently em	ployed on the grd. Flr with large shop windows)	
	W ⁸ AILITO FLOOPE SLAB AILITO FLOOPE SLAB W2 W2 W2 W2	
The relatively thin columns at front are of little use in resisting horizontal load.		
The total horizontal force W, is resisted by back wall if strong enough – where $W_1 = W$		
Then by couple action		
$W_a = W_2 b$		
$W_2 = W_a/b$		

BICC Project: Building STRUCTURAL RIGIDITY - CPD MASONRY		Job Ref:	
Duilding Industry Constant Part of Structure: LONGITUDINAL SHEAR WALL DISTRIBUTION		Sheet No. P03	
Council	Drawing ref: Done by: DHC	Date: 02/02	
Calculations		Output	
	WA NB D WC A B Wb Ex W		
The horizontal load W may be resisted by Wall D.			
Because of the eccentricity e_x , a couple produces a moment			
We _x to be resisted by walls A,B & C given by:			
$\frac{\underline{W}_{\underline{n}} = We X_{\underline{n}} I_{\underline{n}}}{\Sigma I x^{2}}$ where e, x _n are as defined before			