STRUCTURAL DESIGN TO SUPERSTRUCTURE TERRACED APARTMENTS @ TAS-SELLUM GHADIRA

DENIS H. CAMILLERI dhcamill@maltanet.net BICC – CPD 22/04/05 BUILDINGS ON HAZARDOUS GROUND

	Project	Job ref:
	Tas-Sellum Apartment Blk.	
	Part of Structure	Sheet No.
	Upper Floor Slabs	PO1/1
BICC BEILDING INDUSTRY CONSELLATIVE COUNCIL	Drawing ref: Done by: DHC Chkd By:	Date 03/05
Ref:	Calculations	Output
	LOADINGS TO BS8110:-	
	1.4	
	concrete slab 0.15 24kN/m ³ => 5.04kN/m ²	
	1.4	
	finish 0.10 18kN/m ³ => 2.52kN/m ²	
	1.6	
	LL 1.5kN/m ² => <u>2.40kN/m²</u>	
	≈ <u>10.0kN/m²</u>	
	for each 25mm extra thickness at floor slab	
	1.4	
	add 0.025.24 => 0.85kN/m ²	
	Design of Internal Bedroom slab at 2nd floor	
	taking washroom concrete b/w walling	ℓ _e => 3.5m
	1.4	
	wt of walling 1.0kN/m/fil x 10crs => 14kN/m	
	spread over 0.3L x 2 + 0.225m	
	=> 0.3.3.5.2 + 0.225 => 2.325m	
	say 2.1m (width of C503)	
	loading inclusive of partition load	
	= 10kNsqm + 14KN/m / 2.1m => 16.67kN/m	
	BM => 16.67 x 3.5 ² /8 => 25.5kN.m/m	d => 150 -
	k => M/bd ² .f _{cu} => 25.5/1.125 ² .20 => 0.082	20 - 5
	a ₁ => Z/d => 0.9Z => 0.9 x 125 => 112.5mm	=> 125
	$A_s \implies M/(0.87f_y)Z \implies 25.5 / 0.87 \times 460 \times 112.5 \implies 566 \text{mm}^2/\text{m}$	
	Deflection check	
	Modification factor for M/bd ² => 2 is 1.47	
	as steel stress is 0.58.460 566/1010 => 150N/mm ²	
	span / df ₁ => 3500(12 x 5 x 1.47) => 19 < 20 ok	

	Project	Job ref:
	Tas-Sellum Apartment Blk.	11122
	Part of Structure	Sheet No.
	Upper Floor Slabs	PO 2/1
BICC BUILDING INDUSTRY CONSULTATIVE COUNCIL	Drawing ref: Done by: DHC Chkd By:	Date 03/05
Ref:	Calculations	Output
	DESIGN OF 2ND FLOOR SLAB TAKING WASHROOMS AT REAR 2 way panel 6m x 4m ℓ_y / $\ell_x => 6/4 => 1.5$	
		h => 143 +
	span / d => 28	20 + 5
	Total loading from washroom construction	=> 168mm
	roof slab 4m x 3m x 10kN/m ² => 120kN	say roumm
	1.4	
	partition 9m x 1Kn/m/fil x 11crs => 139kN	
	<u>259kN</u>	114.5
	Total u.d.I on this 2nd floor slab	-
	$10kN/m^{2} + 0.85kN/m^{2} + 259kN / 6m / 4m => 21.65kN/m^{2}$	
	for 2-way spanning $\alpha_{sx} \Rightarrow 0.104 \alpha_{sy} \Rightarrow 0.046$	
	M _{sx} => 0.104.21.65.4 ² => 36kNm/m	d => 180 -
		20 - 10
	$M_{sy} \Rightarrow 0.046.21.65.4^2 \Rightarrow 15.93$ kN.m/m	=> 150
	$k \Rightarrow M/bd^2 f_{cu} \Rightarrow 36/1.150^2 20 \Rightarrow 0.067$	
-	a1 => Z/d => 0.91 => 0.91 x 150 => 136.5mm	
	$A_s \implies M/(0.87f_y)Z \implies 36/0.87 \times 460 \times 150 \implies 600 \text{mm}^2/\text{m}$	
	Deflection check	
	Modification factor for M/bd ² => 1.6 is 1.18	
	Spain / $u_{11} = 24000 / 150 \times 1 \times 16 = 22.0 > 20$	
	A _s to 754mm ² / m to give a steel stress of	
	$0.58 \times 460 \times 600 / 754 => 212 \text{N/mm}^2$	

	Tas-Sellum Apartment Bik.	Job rei.
	Part of Structure	Sheet No. PO 3 / 1
BICC	Drawing ref: Done by: DHC Chkd By:	Date 03/05
Ref:	Calculations	Output
	BEAM STRIP 3.75M TAKING 2-WAY LOADING $\ell_e \implies 0.3.375m \implies 1.125m$	
	P => 10kN/m ² .2m + (10crs 1kN/m/fil) 1.4 => 34kN/m	
	n => 21.65kN/m ² .2m + 10.85kN/m ² .2m => 65kN/m	2.5m 1.25
	BM => $(34.2.5.125/3.75)2 + 65 \times 3.75^2/8 => 171.kN.m/m$ k => M/bd ² .f _{cu} => 171/2.170 ² .20 => 0.148	d => 2000 - 20 - 10
	a ₁ => Z/d => 0.78 Z => 0.78.170 => 132mm	=> 170mm
	$A_s \Rightarrow M/(0.87f_y)Z \Rightarrow 171/0.87.460.170 \Rightarrow 2513 \text{mm}^2/\text{m}$	
	i.e IC503 + 6.4Y - 20/m	
	V => 65kN x 3.75m/2 + 34kN x 2 x 25 / 3.75 => 145kN	1
	$\tau => 2513/1.170 => 1.48\%$ v _c => 0.94N/mm ²	1
	$v \Rightarrow 145$ kN / 1m.170mm $\Rightarrow 0.35$ N / mm ² < 0.94 N/mm ² \int	
	Design of Ground Floor Kitchen Slab taking PIERS	
	2-Way panel 6m x 5.5m $\ell_y / \ell_x \Rightarrow 6 / 5.5 \Rightarrow 1.09$	
	$\alpha_{sx} => 0.074$ $\alpha_{sy} => 0.061$	-
		h => 196 +
	span / d => 28 d => 5,500 / 28 => 196mm	20 + 5
	PIER LOADING :-	=> 221
	2nd flr. $(2+1.5)m \times 3m \times 21.65kN/m^2 \implies 227kN$ 1st flr. $(2+2.25m) \times 3m \times 10.85kN/m^2 \implies \frac{138kN}{365kN}$	say 225mm

	Project Tas-Sellum Apartment Blk.	Job ref:
	Part of Structure	Sheet No.
<u></u>	Upper Floor Slabs	PO 4/1
BICC BUILDING INDUSTRY CONSULTATIVE COUNCIL	Drawing ref: Done by: DHC Chkd By:	Date 03/05
Ref:	Calculations	Output
	total udL on this ground floor slab	
	10kN/m ² + 0.85kN/m ² x 3 + (2in No x 365kN)/6m/5.5m	
	=> 34.67kN/sqm	
	$M_{sx} \Rightarrow 0.074.35 \text{kN/m}^2 5.5^2 \Rightarrow 78.35 \text{kN.m/m}$	d => 225 -
	M => 0.061 25kN/m ² 5 5 ² => 64 59kN m/m	20 - 10
	Misy 0.001.35KN/III 5.5 04.56KN.11/11	=> 190
	$K => M/Dd .t_{cu} => 78.35/1.190.20 => 0.1085$	
	$k => M/bd^{-}.t_{cu} => 64.58/1.190^{-}.20 => 0.089$	1 - 1 - 1
	$a_1 => Z/d => 0.86 \notin 0.89$	
	Z => 0.86.190 => 163mm 0.89.190 => 169mm	
	$A_s \Rightarrow M/(0.87f_y)Z$	
	=> 78.35 / (0.87.460) / 163 => 1201sqmm/m	Y20 @ 250 (1260mm ² /m)
	=> 64.58 / (0.87.460) / 169 => 955sqmm / m	Y20 @ 325 (969mm ² /m)
	Deflection Check	
	Modification factor f_1 for M/bd ² => 2.17 is 1.05	1.1.1.1.1.1
	span / d f ₁ => 4000 / 190.1.05 => 20 J	
	Beam strip 3.75m taking 2-WAY Loading:-	
	$u.d.\ell => 35kN/m^2.5.5m/3 + (10 + 0.85.3) kN/m^2.2m$	- 201 30
	=> 89.27kN/m	10.0
	$BM => 90kN/m^{2}$. 3.75 ⁻ /8 => 158kNm	1-1-1
	$K => M/Da^{-1} f_{cu} => 158 / 2.190^{-1} .20 => 0.109$	
	$a_1 => Z/d => 0.86$	-
	Z => 0.86.190 => 163mm	-
	$ A_s => M/(0.87f_y) Z => 158/(0.87.460)/163 => 2422mm^2/m 8Y20$	

Part of StructureUpper Floor SlabsSheet No. PO 5 / 1BLCCDone by: DHCChied By:Done by: DHCChied By:OutputBEAM STRIP A - B @ GROUND FLOOR 2.75m Load/m 10kN/m ² 6m / 2 x 2 floors + (10crs 0.9)1.4= 72.6kN/m200-BM => 75kN/m 2.75 ² /8 => 70.9 / 1.170 ² .20 => 0.123at a > Z/d => 0.83 Z => 0.83.170 => 141mmAs a => T/0.9 / 0.87.460.141 => 1256mm ² R _A => R _B => 75kN/m.275m/2 => 103kNDESIGN OF END STAIRWELL WALLING SUPPORTED AT UPPER BASEMENT - 3.0Mdue to arching effects loading from ground floor only load / m => 35kN/m.5.75m/3 + (1.35.10.00)1.4 + (10kN/sqm + 3.0.85kN/sqm) => 111.5kN/mBM => 115kN/m .3 ² /8 => 129kNm kk> M/00 ² .6 _u => 129 / 2.1.170 ² .20 => 0.106Colspan="2">Colspan="2">Distore to 0.07 .470 => 140 pm		Tas-Sellum Apartment Blk.	Job ref:
Drawing ref: Done by: DHC Child By: Date Ref: Calculations Output BEAM STRIP A - B @ GROUND FLOOR 2.75m Load/m 10kN/m ² 6m / 2 x 2 floors + (10crs 0.9)1.4 $=$ 72.6kN/m $a = > 72.6kN/m$ BM => 75kN/m . 2.75 ² /8 => 70.9Nm k => M/bd ² .f _{cu} => 70.9 / 1.170 ² .20 => 0.123 $a = > 200 - 10$ BA => 75kN/m . 2.75 ² /8 => 70.9 / 1.170 ² .20 => 0.123 $a = > 17/a$ $a_1 => Z/d => 0.83 Z => 0.83.170 => 141mm$ $A_s => M/(0.87f_y)Z => 70.9 / 0.87.460.141 => 1256mm2$ R _A => R _B => 75kN/m.275m/2 => 103kN DESIGN OF END STAIRWELL WALLING SUPPORTED AT UPPER BASEMENT - 3.0M due to arching effects loading from ground floor only load / m => 35kN/m.5.75m/3 + (1.35.10.00)1.4 + (10kN/sqm + 3.0.85kN/sqm) => 111.5kN/m BM => 115kN/m .3 ² /8 => 129 / 2.1.170 ² .20 => 0.106 $a = > 100 - 102$		Part of Structure Upper Floor Slabs	Sheet No. PO 5 / 1
Ref: Calculations Output BEAM STRIP A - B @ GROUND FLOOR 2.75m Load/m 10kN/m ² 6m / 2 x 2 floors + (10crs 0.9)1.4 - - => 72.6kN/m d=> 200 - 10 - 20 - 10 BM => 75kN/m . 2.75 ² /8 => 70.9Nm 20 - 10 - - k => M/bd ² .f _{cul} => 70.9 / 1.170 ² .20 => 0.123 => 17/ - - a ₁ => Z/d => 0.83 Z => 0.83.170 => 141mm - => 17/ - A ₅ => M/(0.87fy)Z => 70.9 / 0.87.460.141 => 1256mm ² - - => 17/ R _A => R _B => 75kN/m.275m/2 => 103kN - - => 17/ DESIGN OF END STAIRWELL WALLING - - - => 103kN DESIGN OF END STAIRWELL WALLING - - - - - BUPPORTED AT UPPER BASEMENT - 3.0M -<	BICC	Drawing ref: Done by: DHC Chkd By:	Date 03/05
$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} BEAM \ STRIP \ A - B \ @ \ GROUND \ FLOOR \ 2.75m \\ Load/m \ 10kN/m^2 \ 6m \ / 2 \ x \ 2 \ floors \ + \ (10 \ crs \ 0.9)1.4 \\ \end{array}} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \begin{array}{l} \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} $	Ref:	Calculations	Output
Load/m 10kN/m ² 6m / 2 x 2 floors + (10crs 0.9)1.4 => 72.6kN/m BM => 75kN/m . 2.75 ² /8 => 70.9Nm k => M/bd ² .f _{cu} => 70.9 / 1.170 ² .20 => 0.123 a ₁ => Z/d => 0.83 Z => 0.83.170 => 141mm A _s => M/(0.87f _y)Z => 70.9 / 0.87.460.141 => 1256mm ² R _A => R _B => 75kN/m.275m/2 => <u>103kN</u> DESIGN OF END STAIRWELL WALLING <u>SUPPORTED AT UPPER BASEMENT - 3.0M</u> due to arching effects loading from ground floor only load / m => 35kN/m.5.75m/3 + (1.35.10.00)1.4 + (10kN/sqm + 3.0.85kN/sqm) => 111.5kN/m BM => 115kN/m .3 ² /8 => 129kNm k => M/bd ² .f _{cu} => 129/2.1.170 ² .20 => 0.106		BEAM STRIP A - B @ GROUND FLOOR 2.75m	
$\begin{array}{l} =>72.0 \text{ kN/m} \\ \text{BM} =>75 \text{ kN/m} . 2.75^2 / 8 =>70.9 \text{ Nm} \\ \text{k} => M/bd^2.f_{cu} =>70.9 / 1.170^2.20 => 0.123 \\ \text{a}_1 => Z/d => 0.83 Z => 0.83.170 => 141 \text{ mm} \\ \text{A}_s => M/(0.87 f_y) Z => 70.9 / 0.87.460.141 => 1256 \text{ mm}^2 \\ \text{R}_A => R_B => 75 \text{ kN/m}.275 \text{ m}/2 => 103 \text{ kN} \\ \end{array}$		Load/m 10kN/m ² 6m / 2 x 2 floors + (10crs 0.9)1.4	
BM => 75kN/m. $2.75^2/8$ => 70.9Nm 20-10 k => M/bd ² .f _{ou} => 70.9 / 1.170 ² .20 => 0.123 => 17 a ₁ => Z/d => 0.83 Z => 0.83.170 => 141mm => 1256mm ² A _s => M/(0.87f _y)Z => 70.9 / 0.87.460.141 => 1256mm ² => 103kN DESIGN OF END STAIRWELL WALLING => 103kN due to arching effects loading from ground floor only load / m => 35kN/m.5.75m/3 + (1.35.10.00)1.4 + (10kN/sqm + 3.0.85kN/sqm) => 111.5kN/m BM => 115kN/m. 3 ² /8 => 129kNm k => M/bd ² .f _{ou} => 129 / 2.1.170 ² .20 => 0.106 k => Z/d => 0.93 J => 0.93 J => 0.93 J => 140mm		=> /2.0KN/M	d => 200 -
k => $M/bd^{2}.f_{cu}$ => 70.9 / 1.170 ² .20 => 0.123 => 170 a ₁ => Z/d => 0.83 Z => 0.83.170 => 141mm A _s => $M/(0.87f_{y})Z$ => 70.9 / 0.87.460.141 => 1256mm ² R _A => R _B => 75kN/m.275m/2 => <u>103kN</u> DESIGN OF END STAIRWELL WALLING <u>SUPPORTED AT UPPER BASEMENT - 3.0M</u> due to arching effects loading from ground floor only load / m => 35kN/m.5.75m/3 + (1.35.10.00)1.4 + (10kN/sqm + 3.0.85kN/sqm) => 111.5kN/m BM => 115kN/m .3 ² /8 => 129kNm k => $M/bd^{2}.f_{cu}$ => 129/2.1.170 ² .20 => 0.106		BM => 75kN/m . 2.75 ² /8 => 70.9Nm	20 - 10
$a_{1} \Rightarrow Z/d \Rightarrow 0.83 Z \Rightarrow 0.83.170 \Rightarrow 141mm$ $A_{s} \Rightarrow M/(0.87f_{y})Z \Rightarrow 70.9 / 0.87.460.141 \Rightarrow 1256mm^{2}$ $R_{A} \Rightarrow R_{B} \Rightarrow 75kN/m.275m/2 \Rightarrow 103kN$ DESIGN OF END STAIRWELL WALLING <u>SUPPORTED AT UPPER BASEMENT - 3.0M</u> due to arching effects loading from ground floor only load / m => 35kN/m.5.75m/3 + (1.35.10.00)1.4 + (10kN/sqm + 3.0.85kN/sqm) => 111.5kN/m BM => 115kN/m. 3 ² /8 => 129kNm k => M/bd ² .f_{cu} => 129/2.1.170 ² .20 => 0.106		$k \Rightarrow M/bd^2 f_{cu} \Rightarrow 70.9 / 1.170^2 20 \Rightarrow 0.123$	=> 170
$A_{s} \implies M/(0.87f_{y})Z \implies 70.9 / 0.87.460.141 \implies 1256 \text{mm}^{2}$ $R_{A} \implies R_{B} \implies 75 \text{kN/m.} 275 \text{m}/2 \implies 103 \text{kN}$ DESIGN OF END STAIRWELL WALLING <u>SUPPORTED AT UPPER BASEMENT - 3.0M</u> due to arching effects loading from ground floor only load / m => 35 \text{kN/m.} 5.75 \text{m}/3 + (1.35.10.00) 1.4 + (10 \text{kN/sqm} + 3.0.85 \text{kN/sqm}) \implies 111.5 \text{kN/m} BM => 115 kN/m. 3 ² /8 => 129 kNm k => M/bd ² .f_{cu} => 129 / 2.1.170 ² .20 => 0.106		a ₁ => Z/d => 0.83 Z => 0.83.170 => 141mm	And And And
$R_{A} \implies R_{B} \implies 75 \text{kN/m.} 275 \text{m/}2 \implies 103 \text{kN}$ $DESIGN \text{ OF END STAIRWELL WALLING}$ $SUPPORTED \text{ AT UPPER BASEMENT - 3.0M}$ due to arching effects loading from ground floor only load / m => 35 \text{kN/m.} 5.75 \text{m/}3 + (1.35.10.00)1.4 $+ (10 \text{kN/sqm} + 3.0.85 \text{kN/sqm}) \implies 111.5 \text{kN/m}$ $BM \implies 115 \text{kN/m} \cdot 3^{2}/8 \implies 129 \text{kNm}$ $k \implies M/bd^{2}.f_{cu} \implies 129/2.1.170^{2}.20 \implies 0.106$		$A_s \implies M/(0.87f_y)Z \implies 70.9 / 0.87.460.141 \implies 1256 mm^2$	
DESIGN OF END STAIRWELL WALLING SUPPORTED AT UPPER BASEMENT - 3.0M due to arching effects loading from ground floor only load / m => $35kN/m.5.75m/3 + (1.35.10.00)1.4$ + $(10kN/sqm + 3.0.85kN/sqm) => 111.5kN/m$ BM => $115kN/m . 3^2/8 => 129kNm$ k => $M/bd^2.f_{cu} => 129/2.1.170^2.20 => 0.106$		$R_A \implies R_B \implies 75$ kN/m.275m/2 $\implies 103$ kN	
SUPPORTED AT UPPER BASEMENT - 3.0M due to arching effects loading from ground floor only load / m => $35kN/m.5.75m/3 + (1.35.10.00)1.4$ + (10kN/sqm + 3.0.85kN/sqm) => $111.5kN/m$ BM => $115kN/m . 3^2/8 => 129kNm$ k => $M/bd^2.f_{cu} => 129/2.1.170^2.20 => 0.106$		DESIGN OF END STAIRWELL WALLING	100
due to arching effects loading from ground floor only load / m => $35kN/m.5.75m/3 + (1.35.10.00)1.4$ + (10kN/sqm + $3.0.85kN/sqm$) => $111.5kN/m$ BM => $115kN/m . 3^2/8 => 129kNm$ k => $M/bd^2.f_{cu} => 129/2.1.170^2.20 => 0.106$		SUPPORTED AT UPPER BASEMENT - 3.0M	
$BM \implies 115kN/m \cdot 3^{2}/8 \implies 129kNm$ $k \implies M/bd^{2}f_{cu} \implies 129/2 \cdot 1 \cdot 170^{2} \cdot 20 \implies 0.106$		due to arching effects loading from ground floor only load / m => 35kN/m.5.75m/3 + (1.35.10.00)1.4 + (10kN/sqm + 3.0.85kN/sqm) => 111.5kN/m	
$k \implies M/bd^2 f_{cu} \implies 129/2.1.170^2.20 \implies 0.106$		BM => 115kN/m . 3 ² /8 => 129kNm	
		$k \Rightarrow M/bd^2 f_{cu} \Rightarrow 129/2.1.170^2.20 \Rightarrow 0.106$	
$ a_1 = 2/d = 0.87/2 = 0.87.170 = 148mm$		a1 => Z/d => 0.87 Z => 0.87.170 => 148mm	
$A_s \implies M/(0.87f_y)Z \implies 129/0.87.460.148 \implies 2176 \text{mm}^2$		$A_s \implies M/(0.87f_y)Z \implies 129/0.87.460.148 \implies 2176 mm^2$	

	Project Tas-Sellum Apartment Blk.	Job ref:
	Part of Structure	Sheet No.
BICC MULTING INDUSTRY	Drawing ref: Done by: DHC Chkd By:	Date 03/05
Ref:	Calculations	Output
	DESIGN OF CORRIDOR WALL SUPPORTED BY GARAGE 3	= =
	$N \implies 10 \text{kN/m}^2.3 \text{m}/2 \times 2 \text{firs} + (0.9 \text{kN/m/fil}.15 \text{crs})1.4$	1 1 3m
	=> 48.9kN/m	
	BM => $50kN/m .3m / 4 + 10kN/m^2 x 3^2 / 8 => 48.75kN.m/m$ k => $M/bd^2.f_{cu} => 0.156$	
	a ₁ => Z/d => 0.775 Z => 0.775.125 => 97mm	
	$A_s \implies M/(0.87f_y) Z \implies 48.75 / 0.87.460.97 \implies 1255 \text{mm}^2/\text{m}$	
	$V => 50 kN/m / 2 + 10 kN/m^2 x 3m / 2 => 40 kN/m$	
	$r \Rightarrow 1255 / 1.125 \Rightarrow 1\% V_c \Rightarrow 0.86 N/mm^2$	
	$v \Rightarrow 40$ kN/m / 1m.125mm $\Rightarrow 0.32$ N / mm ² \int	
	PRESTRESSED PLANKS 6.0m	R _A R _B
	amended R _A and R _B torn PO5	+ +
	=> 7.5N/m (2.75m/2+1m) => 178kN	N M
	R _M => 180kN (2m + 4.5m) / 6m => 195kN	2m 2.5m 1.5m
	BM _{MAX} => 195.1.5m => 292.5kN	-
	or (360 - 195) x 2.0m => 330kN.m to convert to equivalent ud {	
	BM => Wℓ ² /8	
	$w => 8.330 / 6^2 => 73.33 kN/m$	
	this loading is spread over 3 planks	
	u.d. 2 => 73.33kN/m / 3.6m => 20.37kN/m ²	

PRECAST BEARINGS (Building Regulations UK)

- PRECAST CONCRETE floors bearing on supporting walls would be acceptable without any peripheral tie for 5 storey houses, provided the bearing width is at least 50% of the solid wall or inner leaf thickness (not not less than 90mm).
- BS 8100 recommends min bearing on steel of 40mm and an allowance for construction inaccuracies of 3mm/metre. Considering a 6.0m span construction tolerance adds up to 18mm.
- So adding a clearance of 10mm on either side & allowing 5mm for first, suggests a bottom flunge bearing length of 55mm.
- Select beams with minimum width of top flunge 180mm where supporting pre-cast slabs on 2 sides and 230mm where supporting pre-cast slabs at the floor edge.

	Tas-Sellum Anartment Bik	Job ref:
	Part of Structure	Sheet No.
	Upper Basement Slab	PO7/1
BICC MARAMING INDISTRY CONSISTATIVIT COUNCIL	Drawing ref: Done by: DHC Chkd By:	Date 03/05
Ref:	Calculations	Output
	slab loading with partitions 17kN/m ² - concrete slab <u>5kN/m²</u> <u>12kN/m²</u>	
	sate loading (equivalent) on slabs (20.372kN/m ² + 12kN/m ²) / 1.45 => 2200kg/m	
	Vertical shear on planks assumed over 2 units	1
	$V \implies (195kN / 2.4m + 12kN/m^{2} x 3m) / 1.5$ => 80.86kN/m x 1.2m	
	=> 9.7 tonf / panel	
	$b_c => 80.86 \text{kN/m} \times 1.45 / 1 \text{m} \cdot 3.6 \text{N} / \text{mm}^2$	- C
	=> 32.5mm (bearing to be provided @ 125mm	
	Check Party-Wall to take Prestressed Planks 1.45	
	V _{ult} from plank is 80.86kN/m => 117kN/m	
	acting on a triangular stress distribution	
	creating an eccentraity of	
	e => 225/2 - 1/3.125 => 70.83mm	
	Total loading of party-wall at level of planks	
	$N => (5kN/m^2 + 14kN/m^2 + 17kN/m^2.3 flr) 3m.1m$	
	+ (1.35kN/m/fil.48crs) 1.4 => 300kN/m	

Table 1 - Mortar mixes from BS5628 Pt 1

Mortar designation	Types of (proportion	f mortar by volume)	Mean compre at 28 day	ssive strength s (N/mm ²)
	Cement: lime:	Cement: sand with plasticiser	Preliminary (laboratory)	Site tests
	Sund		tests	
(i)	1:0 to ¹ / ₄ : 3	-	16.0	11.0
(ii)	1:1/2:4 to 41/2	1:3 to 4	6.5	4.5
(iii)	1:1:5 to 6	1:5 to 6	3.6	2.5
(iv)	1:2:8 to 9	1:7 to 8	1.5	1.0

The inclusion of lime in our mortars is to be advocated as it improves workability, water retention and bonding properties. Lime mortar is softer and less rigid than cement, and can accommodate slight movement and settlement. Lime is more porous and allows the wall to breathe, reducing the effects of rising damp. Lime mortar takes longer to achieve strength and so limits the speed of rate of laying.

Table 2 gives the strengths of Maltese Mortars from tests carried out by Debattista (1985)

MORTAR CONSTITUENTS	PROPORTION BY VOLUME	COMPRESSIVE STRENGTH 28DAYS-N/mm ²	FLEXURAL STRENGTH	W/C
Cement, Carolline Sand, Fine Globigerina sand	1:2:10	1.86 (iv)	0.58	3.5
Cement, Carolline Sand, Fine Globigerina Sand	1:2:6	4.48 (iii)	1.30	2.0
Cement, carolline Sand, Coarse Globigerina sand	1:3:12	0.92	0.20	4.4
Cement, White lime, carolline Sand, course globigerina sand	1:1.14:2:4	1.43	0.29	2.5
White lime, fine globigerina sand	1:2	1.32	0.56	2.1

Table 3 - Characteristic Compressive stress f_k of 225mm thick masonry N/mm² for specified crushing strength – as per BS 5638 pt 1

Mortar		Gla	Coralline		
Designation	C	Compres	(N/mm^2)		
	15	17.5	20	35	75*
Ι	8.6	9.6	10.6	16.3	27.4
II	7.6	8.4	9.2	13.4	22.6
III	7.2	7.7	8.3	12.2	
IV	6.3	6.8	7.4	10.4	

* as per BS 5628 pt2 (Source: Structural Integrity Handbook BICC)

Cachia (1985) noted in testing highest franka crushing value of 32.9N/mm² and the corresponding lowest at 15N/mm² Table 4 - Characteristic Compressive stress f_k of 180mm thick masonry N/mm2 for specified crushing strength – as per BS 5628 pt1

Mortar		Gla	Coralline		
Designation	Са	ompress	sive Stre	ength of Unit	(<i>N/mm²</i>)
	15	17.5	75*		
Ι	9.9	11.0	12.2	18.7	31.6
II	8.7	9.6	10.5	15.4	24.8
III	8.2	8.8	9.5	14.0	
IV	7.2	7.8	8.5	12.0	

* as per BS5628 pt2 (Source: Structural Integrity Handbook BICC)

DIUCK											
Mortar Designation	Comp	Compressive Strength of Unit (N/mm ²)									
	2.8	3.5	5.0	7.0	10	15	20	35			
Ι	2.0	2.5	3.6	4.4	5.1	6.3	7.4	11.4			
II	2.0	2.5	3.6	4.2	4.8	5.6	6.4	9.4			
III	2.0	2.5	3.6	4.1	4.7	5.3	5.8	8.5			
IV	2.0	2.5	3.1	3.7	4.1	4.7	5.2	7.3			

 Table 5 - Characteristic Compressive stress fk of 225 thick concrete hollow blockwork in N/mm²

Table 6 - Characteristic Compressive stress fk of 150 thick concrete hollow blockwork in N/mm²

Mortar Designation	Com	ipressiv	e Strengt	h of Unit	(<i>N/mm</i>	2 ²)		
	2.8	3.5	5.0	7.0	10	15	20	35
Ι	2.6	3.2	4.6	5.4	5.9	6.7	7.4	11.4
II	2.6	3.2	4.6	5.2	5.5	6.0	6.4	9.4
III	2.6	3.2	4.6	5.1	5.3	5.6	5.8	8.5
IV	2.6	3.2	4.1	4.5	4.7	5.0	5.2	7.3

Blockwork type mm	Average Characteristic Strength N/mm2	Average Coefficient of variation %	Period	Best Year %	Worst Year %
115	5.86	18.23	1991 1994	1992 13.37%	1991 25.29%
150	7.51	16.25	1991 1996	1993 12.58%	1991 20.28%
225 singlu	7.50	13.01	1991 -1996	1993 9.43%	1996 19.61%
225 dobblu	8.67	12.93	1991 -1996	1995 10.92%	1996 14.86%

Table 6 – Blockwork Characteristic Strength f_k Data

Source: Grech (1997)

An important concept to introduce is shell bedding, with mortar laid on the 2 outer edges only. The design strength should be reduced by the ratio of the bedded area to the gross area.

LOAD BEARING PROPERTIE OF MASONRY WALL PANELS

- a) The horizontal bed joins should be filled completely with mortar. Incompletely filled bed joints may reduce the strength of masonry panels by 33%. Failure to fill vertical joints has little effect on the compressive strength but are undesirable for weather and force, exclusion and sound insulation.
- b) Mortar bed joints should not be thicker than 10mm.
 Bedjoints of 16 –19mm thickness, result in a reduction of compressive strength of up to 25% as compared with 10mm thick joints.
- c) Before laying mortar the block is to be well wetted to reduce its suction rate, plus a proportion of lime in the mortar mix will help the mortar mix to retain its water. A high absorbent block will result in a weaker mortar, with a resulting weaker wall panel.

Material	Special Category	Normal Category	BS 5628
Masonry			
Compression	2.5	3.1	Pt1
Compression/flexure	2.0	2.3	Pt 2
Flexure	2.8	3.5	Pt1
Shear	2.5	2.5	Pt1
Shear	2.0	2.0	Pt 2
Bond	1.5	1.5	Pt2
Strength of steel	1.15	1.15	Pt 2
Wall ties	3.0	3.0	Pt 1

Table7 - Partial Safety factors γ_m for material strength for normal design loads.

Material	Crushing strength N/mm2	Mortar type IV KN/m	Mortar type III KN/m	Morta r type II KN/m
225 franka	20	537	602	
225 qawwi	75			1640
180 franka	20	493	551	
150 franka	20	469	522	
225 block dobblu	8.5	283	319	
225 block singlu	7	268	297	
150 block	7	217	246	
115 block	5	163	185	
225 infilled block	15	457	522	551
225 infilled block with 12mm	15			944
bar at 225 centres				
225 infilled block with 20mm bar at 225 centres	15			1206

Table 8 - Design axial loads for various wall types

The above table demonstrates the low load bearing capacity of concrete b/w of crushing strength $7N/mm^2$, as being approximately 50% for equivalent thick franka of crushing strength $20N/mm^2$.

(Source – Structural Integrity Handbook BICC)

	Project Tas-Sellum Apartment Blk.	Job ref:
	Part of Structure Party Wall Stability	Sheet No. PO 8 / 1
BICC	Drawing ref: Done by: DHC Chkd By:	Date 03/05
Ref:	Calculations	Output
	thus 117kN/m has an eccentricity of 28.75mm	
	with (300kN/m - 117kN/m) => 183 acting centrally	
	resultant ex => 117.70.83 / 300 => 27.62mm	
	according to BS5628 (masonary code)	
	stress reduction factor ß due to slenderness	
	e/t => 27.62/225 => 0.12	
	$h_{eff} / t_{ef} \Rightarrow 0.85.2450 / 225 \Rightarrow 9.25$	
	ß => 0.84	
	f _m => 300/1m.225mm => 1.33N/mm ²	
	$f_{all} \Rightarrow 7.4N/mm^2 \times 0.84/3 \Rightarrow 2.07N/mm^2$	
	Total loading on Party Wall :-	
	Garage L.L 2.5kN/m ²	
	Garage Floor Loading 10kN/m ² + (1.5) 1.6 => 12.4kN/m ²	
	$\Sigma N => 300 k N/m + 12.4 k N/m^2.3 m$	
	+ (1.35kN/m/fil.20crs)1.4 => 375kN/m	
	f _m => 375 / 1m .225mm => 1.66N/mm ²	
	* note that this party-wall is loaded from one side only	

STABILITY

FIG 1

THE EXTENT OF DAMAGE SHOULD NOT BE DISPROPORTIONATE TO ITS CAUSE

- BS 5628 specifies the minimum lateral load at 1.5% of the total characteristic DL above that level.
- EC6 gives this at 1% of the combined vertical characteristic dead and imposed load at the particular floor divided by √h

tot

Their effect may be ignored if less onerous than other horizontal actions eg. wind

ACCIDENTAL DAMAGE

For buildings with 5 storeys or more & clear spans exceeding 9.00m:

BS 5628 pt 1 - Table 12 - 3 options given:

- option 1 based on members being able to withstand a pressure of 34KN/m² in any direction
- option 3 prescribes horizontal & vertical ties as in BS 8110
- option 2 is a hybrid between options 1 & 3 where in masonry construction it may be difficult to provide vertical tying. Unless member defined as protected (can withstand pressure up to 34KN/m²) the effect of removing one vertical member at a time is to be considered.

TIEING PROVISIONS TO BS5628 pt 1

***** Vertical Tie the greater of :

 $T = (34A/8000) (h/t)^2 N$ or 100KN/m length

where A is the area in mm²

- ***** Horizontal Tile in KN, is the lesser of:
 - $F_t = 20 + 4 N_s$ (where N_s is the no of storeys)

or 60 KN

Internal Ties in KN/m

 $f_t' = F_t \{ (G_k + Q_k)/7.5 \} X L_a/5$

External Wall or Column Tie in KN for columns & KN/m for walls is the lesser of

 $2F_t$ or (L/2.5) F_t

The tie force is based on shear strength or friction

ROBUSTNESS – Defined in EN 1991.1.7

- "The ability of a structure to withstand events like fire, explosions, impact or the consequences of human error without being damaged to an extend disproportionate to the original cause".
- Regardless of their height all buildings to be compliant with "Disproportionate Collapse". This removes the 5-storey limit.

	Project	Job ref:
1151	Tas-Sellum Apartment Bik.	
	Part of Structure	Sheet No.
	Detailing for stability	PO 9/1
BICC Intering Interstry Insultative Council	Drawing ref: Done by: DHC Chkd By:	Date 03/05
Ref:	Calculations	Output
	These requirements are outlined in C 2.37	
	of BS5628 (masonary Pt1) - design for accidental damage	
	to be compared to Cl 3.12.3.4 - Cl 3.12.3.5	
	BS 8110 Pt 1 - Concrete	
	BS 5628 subdivides bdgs into Category 1 & 2	
	Category 2 is all buildings above	
	5 stories have to be further designed	
	for options 1 - 3	
	OPTION 2 requiring	
	HORIZONTAL TIES	
	internal peripheral external wall external column	
	where $F_t = 20 + 4n$ or 60kN (lesser of)	
	$F_t => 20 + 4.6 => 44kN$ (n is no. of stories)	-
	VERTICAL TIE	
	$T \implies (34A / 8000) (h/t^2) - kN$	or 100kN/m
	$T \Rightarrow (34.1000.225 / 8000) (3000/225^2)$ => 170kN / m	whichever is th greater

	rivect	JOD TEL.
ITT	Tas-Sellum Apartment Blk.	
	Part of Structure	Sheet No.
	Detailing for stability	PO 10 / 1
BICC BLILDING INDUSTRY ONNULLATIVE COUNCIL	Drawing ret. Drie by. Dric Crika by.	Date 03/05
Ref:	Calculations	Output
	VERTICAL TIE REINFORCEMENT	
	170kN/m / 460N/mm ² => 369mm ² /m (1Y - 25 / plank)	
	PERIPHERAL TIE REINFORCEMENT - Ft	
3	$44kN / 460N/mm^2 \Rightarrow 95mm^2 (1Y - 12mm)$	-
	INTERNAL TIE REINFORCEMENT	
	$F_{t} = F_{t}(g_{k}+q)(7.5 \times L_{A}/5 \text{ kN/m})$	-
	=> 44 (5.4 + 2.0) / 7.5 x 6/5 => 52kN/m	
	$A_s => 52kN/m / 460 N/mm^2 => 113mm^2/m (1Y - 16mm / plank)$	
	EXTERNAL WALL TIE	1
	Tie Force => $2F_t$ => $88kN/m$ or	
	$(h / 2.5)F_t => (3/25)44 => 53kN/m$ (lesser of)	
	$f_v \Rightarrow 0.15 + 0.6g_a$ for grade IV mortar at the upper level	-
	g _a => 50kN/m / 1m.0225m => 0.22N/mm ²	-
	$f_v \implies 0.15 + 0.6 \times 0.22 \implies 0.282 \text{N/mm}^2$	
	Combined stear resistance on both surfaces => 2 (0.282 x 225mm) => 101.5kN/m 1.25	
	> 53kN/m no steel ties required	-