STRUCTURAL DESIGN TO SUPERSTRUCTURE TERRACED APARTMENTS @ TAS-SELLUM GHADIRA

DENIS H. CAMILLERI
dhcamill@maltanet.net
BICC - CPD 22/04/05
BUILDINGS ON HAZARDOUS GROUND

	Project Tas-Sellum Apartment Blk.	Job ref:
	Part of Structure Upper Floor Slabs	$\begin{aligned} & \text { Sheet No. } \\ & \text { PO } 4 \text { / } 1 \end{aligned}$
	Drawing ref: Done by: DHC Chkd By:	Date $03 / 05$
Ref:	Calculations	Output
	total udL on this ground floor slab Deflection Check Modification factor f_{1} for $M / b d^{2} \Rightarrow 2.17$ is 1.05 span $/ \mathrm{d} \mathrm{f}_{1}=>4000 / 190.1 .05 \Rightarrow 20 \mathrm{f}$ Beam strip 3.75 m taking 2-WAY Loading:- $\begin{aligned} & \text { u.d. } \ell \Rightarrow 35 \mathrm{kN} / \mathrm{m}^{2} \cdot 5 \cdot 5 \mathrm{~m} / 3+(10+0.85 .3) \mathrm{kN} / \mathrm{m}^{2} \cdot 2 \mathrm{~m} \\ & \Rightarrow 89.27 \mathrm{kN} / \mathrm{m} \\ & B M=90 \mathrm{kN} / \mathrm{m}^{2} \cdot 3.75^{2} / 8 \Rightarrow 158 \mathrm{kNm} \\ & \mathrm{k} \Rightarrow \mathrm{M} / \mathrm{bd}^{2} \cdot \mathrm{f}_{\mathrm{cu}}=>158 / 2.190^{2} \cdot 20 \Rightarrow 0.109 \\ & a_{1} \Rightarrow Z / \mathrm{d} \Rightarrow 0.86 \\ & Z \Rightarrow 0.86 .190 \Rightarrow 163 \mathrm{~mm} \\ & A_{s} \Rightarrow M /\left(0.87 \mathrm{f}_{\mathrm{y}}\right) \quad Z=>158 /(0.87 .460) / 163 \Rightarrow 2422 \mathrm{~mm}^{2} / \mathrm{m} 8 \mathrm{Y} 20 \end{aligned}$	

	Project Tas-Sellum Apartment Blk.	Job ref:
	Part of Structure \quad Upper Floor Slabs	Sheet No. PO 5/1
	Drawing ref: Done by: DHC Chkd By:	Date $03 / 05$
Ref:	Calculations	Output
	$\begin{aligned} & \text { BEAM STRIP A - B @ GROUND FLOOR 2.75m } \\ & \text { Load } / \mathrm{m} 10 \mathrm{kN} / \mathrm{m}^{2} 6 \mathrm{~m} / 2 \times 2 \text { floors }+(10 \mathrm{crs} 0.9) 1.4 \\ & =72.6 \mathrm{kN} / \mathrm{m} \\ & \text { BM } \Rightarrow 75 \mathrm{kN} / \mathrm{m} \cdot 2.75^{2} / 8=>70.9 \mathrm{Nm} \\ & \mathrm{k} \Rightarrow \mathrm{M} / \mathrm{bd} \mathrm{~d}^{2} \cdot \mathrm{f}_{\mathrm{cu}}=>70.9 / 1.170^{2} .20=>0.123 \\ & \mathrm{a}_{1} \Rightarrow Z \mathrm{Z} / \mathrm{d}=>0.83 \quad Z=>0.83 .170 \Rightarrow 141 \mathrm{~mm} \\ & A_{s} \Rightarrow M /\left(0.87 \mathrm{f}_{\mathrm{y}}\right) Z=>70.9 / 0.87 .460 .141 \Rightarrow 1256 \mathrm{~mm}^{2} \\ & R_{A}=>R_{B}=>75 \mathrm{kN} / \mathrm{m} \cdot 275 \mathrm{~m} / 2=>103 \mathrm{kN} \end{aligned}$ DESIGN OF END STAIRWELL WALLING SUPPORTED AT UPPER BASEMENT - 3.0M due to arching effects loading from ground floor only $\mathrm{load} / \mathrm{m}=>35 \mathrm{kN} / \mathrm{m} \cdot 5.75 \mathrm{~m} / 3+(1.35 .10 .00) 1.4$ $+(10 \mathrm{kN} / \mathrm{sqm}+3.0 .85 \mathrm{kN} / \mathrm{sqm})=>111.5 \mathrm{kN} / \mathrm{m}$ $\begin{aligned} & B M=115 \mathrm{kN} / \mathrm{m} \cdot 3^{2} / 8 \Rightarrow 129 \mathrm{kNm} \\ & \mathrm{k} \Rightarrow \mathrm{M} / \mathrm{bd} d^{2} \cdot \mathrm{f}_{\mathrm{cu}} \Rightarrow 129 / 2.1 \cdot 170^{2} \cdot 20 \Rightarrow 0.106 \\ & a_{1} \Rightarrow Z / \mathrm{d}=>0.87 \quad Z=0.87 .170 \Rightarrow 148 \mathrm{~mm} \\ & A_{s} \Rightarrow M /\left(0.87 \mathrm{f}_{\mathrm{y}}\right) Z \Rightarrow 129 / 0.87 .460 .148 \Rightarrow 2176 \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} d=> & 200- \\ & 20-10 \\ & =>170 \end{aligned}$

	Project \quad Tas-Sellum Apartment Blk.	Job ref.
	Part of Structure Upper Basement Slab	$\begin{aligned} & \text { sheet No. } \\ & \text { PO 6/1 } \end{aligned}$
	Drawing ref: Done by: DHC Chkd By:	$\begin{aligned} & \text { Date } \\ & 03 / 05 \\ & \hline \end{aligned}$
Ref:	Calculations	Output
	DESIGN OF CORRIDOR WALL SUPPORTED BY GARAGE 3	
	amended R_{A} and R_{B} torn PO5 $\Rightarrow 7.5 \mathrm{~N} / \mathrm{m}(2.75 \mathrm{~m} / 2+1 \mathrm{~m})=178 \mathrm{kN}$	
	$\begin{aligned} & R_{M} \Rightarrow 180 \mathrm{kN}(2 \mathrm{~m}+4.5 \mathrm{~m}) / 6 \mathrm{~m} \Rightarrow 195 \mathrm{kN} \\ & B M_{\text {max }}=>195.1 .5 \mathrm{~m} \Rightarrow 292.5 \mathrm{kN} \end{aligned}$ or $(360-195) \times 2.0 \mathrm{~m} \Rightarrow 330 \mathrm{kN} . \mathrm{m}$ to convert to equivalent ud ℓ $\begin{aligned} & B M=>W \ell^{2} / 8 \\ & w=8.330 / 6^{2}=73.33 \mathrm{kN} / \mathrm{m} \end{aligned}$ this loading is spread over 3 planks u.d. $\boldsymbol{\ell}=73.33 \mathrm{kN} / \mathrm{m} / 3.6 \mathrm{~m} \Rightarrow 20.37 \mathrm{kN} / \mathrm{m}^{2}$	2 m 2.5 m 1.5 m

PRECAST BEARINGS (Building Regulations UK)

PRECAST CONCRETE floors bearing on supporting walls would be acceptable without any peripheral tie for 5 storey houses, provided the bearing width is at least 50% of the solid wall or inner leaf thickness (not not less than 90 mm).
BS 8100 recommends min bearing on steel of 40 mm and an allowance for construction inaccuracies of $3 \mathrm{~mm} / \mathrm{metre}$. Considering a 6.0 m span construction tolerance adds up to 18 mm .

So adding a clearance of 10 mm on either side \& allowing 5 mm for first, suggests a bottom flunge bearing length of 55 mm .
Select beams with minimum width of top flunge 180 mm where supporting pre-cast slabs on 2 sides and 230 mm where supporting pre-cast slabs at the floor edge.

$=7$	Project \quad Tas-Sellum Apartment Bik.	Job ref:
	Part of Structure Upper Basement Slab	Sheet No. PO $7 / 1$
	Drawing ref: Done by. DHC Chkd By.	03/05
Ref:	Calculations	Output
	$\begin{array}{rr} \hline \text { slab loading with partitions } & 17 \mathrm{kN} / \mathrm{m}^{2}- \\ \text { concrete slab } & \frac{5 \mathrm{kN} / \mathrm{m}^{2}}{12 \mathrm{kN} / \mathrm{m}^{2}} \end{array}$	
	sate loading (equivalent) on slabs $\left(20.372 \mathrm{kN} / \mathrm{m}^{2}+12 \mathrm{kN} / \mathrm{m}^{2}\right) / 1.45 \Rightarrow 2200 \mathrm{~kg} / \mathrm{m}$	
	Vertical shear on planks assumed over 2 units	
	$\mathrm{V}=>\left(195 \mathrm{kN} / 2.4 \mathrm{~m}+12 \mathrm{kN} / \mathrm{m}^{2} \times 3 \mathrm{~m}\right) / 1.5$	
	$\begin{aligned} & \Rightarrow 80.86 \mathrm{kN} / \mathrm{m} \times 1.2 \mathrm{~m} \\ & =9.7 \text { tonf } / \text { panel } \end{aligned}$	
	$\mathrm{b}_{\mathrm{c}}=880.86 \mathrm{kN} / \mathrm{m} \times 1.45 / 1 \mathrm{~m} .3 .6 \mathrm{~N} / \mathrm{mm}^{2}$	
	Check Party-Wall to take Prestressed Planks	
	$\mathrm{V}_{\text {uif }}$ from plank is $80.86 \mathrm{kN} / \mathrm{m} \quad \Rightarrow 117 \mathrm{kN} / \mathrm{m}$	
	acting on a triangular stress distribution	
	creating an eccentraity of	
	$e=>225 / 2-1 / 3.125=>70.83 \mathrm{~mm}$	
	Total loading of party-wall at level of planks	
	$\mathrm{N}=>\left(5 \mathrm{kN} / \mathrm{m}^{2}+14 \mathrm{kN} / \mathrm{m}^{2}+17 \mathrm{kN} / \mathrm{m}^{2} .3 \mathrm{flr}\right) 3 \mathrm{~m} .1 \mathrm{~m}$	
	$+(1.35 \mathrm{kN} / \mathrm{m} /$ fil 48 crs$) 1.4$ => $300 \mathrm{kN} / \mathrm{m}$	

Table 1 - Mortar mixes from BS5628 Pt 1

Mortar designation	Types of mortar (proportion by volume)		Mean compressive strength at 28 days (N/mm	
	Cement: lime: sand	Cement: sand with plasticiser	Preliminary (laboratory) tests	Site tests
(i)	$1: 0$ to $1 / 4: 3$	-	16.0	11.0
(ii)	$1: 1 / 2: 4$ to $41 / 2$	$1: 3$ to 4	6.5	4.5
(iii)	$1: 1: 5$ to 6	$1: 5$ to 6	3.6	2.5
(iv)	$1: 2: 8$ to 9	$1: 7$ to 8	1.5	1.0

The inclusion of lime in our mortars is to be advocated as it improves workability, water retention and bonding properties. Lime mortar is softer and less rigid than cement, and can accommodate slight movement and settlement. Lime is more porous and allows the wall to breathe, reducing the effects of rising damp. Lime mortar takes longer to achieve strength and so limits the speed of rate of laying.

Table 2 gives the strengths of Maltese Mortars from tests carried out by Debattista (1985)
$\begin{array}{|l|c|c|c|c|}\hline \begin{array}{l}\text { MORTAR } \\ \text { CONSTITUENTS }\end{array} & \begin{array}{c}\text { PROPORTION } \\ \text { BY VOLUME }\end{array} & \begin{array}{c}\text { COMPRESSIVE } \\ \text { STRENGTH } \\ \text { 28DAYS-N/mm }\end{array}\end{array}$ 年LLEXURAL $\left.\begin{array}{c}\text { STRENGTH }\end{array}\right]$

Table 3 - Characteristic Compressive stress f_{k} of 225 mm thick masonry $\mathrm{N} / \mathrm{mm}^{2}$ for specified crushing strength - as per BS 5638 pt 1

Mortar Designation	Globigerina				Coralline
	Compressive Strength of Unit (N/mm ${ }^{2}$)				
	$\mathbf{1 5}$	$\mathbf{1 7 . 5}$	$\mathbf{2 0}$	$\mathbf{3 5}$	$\mathbf{7 5}$
\boldsymbol{I}	8.6	9.6	10.6	16.3	27.4
II	7.6	8.4	9.2	13.4	22.6
III	7.2	7.7	8.3	12.2	
IV	6.3	6.8	7.4	10.4	

* as per BS 5628 pt2 (Source: Structural Integrity Handbook BICC)

Cachia (1985) noted in testing highest franka crushing value of $32.9 \mathrm{~N} / \mathrm{mm}^{2}$ and the corresponding lowest at $15 \mathrm{~N} / \mathrm{mm}^{2}$

Table 4 - Characteristic Compressive stress f_{k} of 180 mm thick masonry $\mathrm{N} / \mathrm{mm} 2$ for specified crushing strength - as per BS 5628 pt1

Mortar Designation	Globigerina				Coralline
	Compressive Strength of Unit $\left(\mathbf{N} / \mathrm{mm}^{2}\right)$				
	$\mathbf{1 5}$	$\mathbf{1 7 . 5}$	20	$\mathbf{3 5}$	75^{*}
I	9.9	11.0	12.2	18.7	31.6
II	8.7	9.6	10.5	15.4	24.8
III	8.2	8.8	9.5	14.0	
IV	7.2	7.8	8.5	12.0	

* as per BS5628 pt2 (Source: Structural Integrity Handbook BICC)

Table 5 - Characteristic Compressive stress f_{k} of $\mathbf{2 2 5}$ thick concrete hollow blockwork in $\mathrm{N} / \mathrm{mm}^{2}$

Mortar Designation	Compressive Strength of Unit (N/mm ${ }^{\mathbf{2}}$)							
	2.8	3.5	5.0	7.0	$\mathbf{1 0}$	$\mathbf{1 5}$	20	35
\boldsymbol{I}	2.0	2.5	3.6	4.4	5.1	6.3	7.4	11.4
$\boldsymbol{I I}$	2.0	2.5	3.6	4.2	4.8	5.6	6.4	9.4
$\boldsymbol{I I I}$	2.0	2.5	3.6	4.1	4.7	5.3	5.8	8.5
$\boldsymbol{I} \boldsymbol{V}$	2.0	2.5	3.1	3.7	4.1	4.7	5.2	7.3

Table 6 - Characteristic Compressive stress f_{k} of 150 thick concrete hollow blockwork in N/mm ${ }^{2}$

Mortar Designation	Compressive Strength of Unit (N/mm ${ }^{2}$)							
	$\mathbf{2 . 8}$	$\mathbf{3 . 5}$	$\mathbf{5 . 0}$	7.0	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 5}$
\boldsymbol{I}	2.6	3.2	4.6	5.4	5.9	6.7	7.4	11.4
II	2.6	3.2	4.6	5.2	5.5	6.0	6.4	9.4
III	2.6	3.2	4.6	5.1	5.3	5.6	5.8	8.5
IV	2.6	3.2	4.1	4.5	4.7	5.0	5.2	7.3

Table 6 - Blockwork Characteristic Strength f_{k} Data

Blockwork type mm	Average Characteristic Strength N/mm2	Average Coefficient of variation \%	Period	Best Year \%	Worst Year \%
$\mathbf{1 1 5}$	5.86	18.23	19911994	1992	1991
$\mathbf{1 5 0}$	7.51	16.25	19911996	1993	1991
$\mathbf{2 2 5}$ singlu	7.50	13.01	$1991-1996$	1993	19.58% $\mathbf{2 2 5}$ dobblu $\operatorname{8.67}$

Source: Grech (1997)
An important concept to introduce is shell bedding, with mortar laid on the 2 outer edges only. The design strength should be reduced by the ratio of the bedded area to the gross area.

LOAD BEARING PROPERTIE OF MASONRY WALL PANELS

a) The horizontal bed joins should be filled completely with mortar. Incompletely filled bed joints may reduce the strength of masonry panels by $\mathbf{3 3 \%}$. Failure to fill vertical joints has little effect on the compressive strength but are undesirable for weather and force, exclusion and sound insulation.
b) Mortar bed joints should not be thicker than 10 mm . Bedjoints of $\mathbf{1 6} \mathbf{- 1 9 m m}$ thickness, result in a reduction of compressive strength of up to 25% as compared with 10 mm thick joints.
c) Before laying mortar the block is to be well wetted to reduce its suction rate, plus a proportion of lime in the mortar mix will help the mortar mix to retain its water. A high absorbent block will result in a weaker mortar, with a resulting weaker wall panel.

Table7 - Partial Safety factors γ_{m} for material strength for normal design loads.

Material	Special Category	Normal Category	BS 5628
Masonry			
Compression	2.5	3.1	Pt 1
Compression/flexure	2.0	2.3	Pt 2
Flexure	2.8	3.5	Pt 1
Shear	2.5	2.5	Pt 1
Shear	2.0	2.0	Pt 2
Bond	1.5	1.5	Pt 2
Strength of steel	1.15	1.15	Pt 2
Wall ties	3.0	3.0	Pt 1

Table 8 - Design axial loads for various wall types

Material	Crushing strength N/mm2	Mortar type IV KN/m	Mortar type III KN/m	Morta r type II KN/m
225 franka	20	537	602	
225 qawwi	75			1640
180 franka	20	493	551	
150 franka	20	469	522	
225 block dobblu	8.5	283	319	
225 block singlu	7	268	297	
150 block	7	217	246	
115 block	5	163	185	
225 infilled block	15	457	522	551
225 infilled block with 12mm bar at 225 centres	15			944
225 infilled block with 20mm bar at 225 centres	15			1206

The above table demonstrates the low load bearing capacity of concrete b / w of crushing strength $7 \mathrm{~N} / \mathrm{mm}^{2}$, as being approximately 50% for equivalent thick franka of crushing strength $20 \mathrm{~N} / \mathrm{mm}^{2}$.
(Source - Structural Integrity Handbook BICC)

\checkmark		Job ref:
11	Part of Structure Party Wall Stability	Sheet No. PO 8 / 1
	Drawing ref: Done by. DHC Chkd By:	$\begin{aligned} & \text { Date } \\ & 03 / 05 \\ & \hline \end{aligned}$
Ref:	Calculations	Output
	thus $117 \mathrm{kN} / \mathrm{m}$ has an eccentricity of 28.75 mm with $(300 \mathrm{kN} / \mathrm{m}-117 \mathrm{kN} / \mathrm{m})=>183$ acting centrally resultant $e_{x}=>117.70 .83 / 300=>27.62 \mathrm{~mm}$ according to BS5628 (masonary code) stress reduction factor B due to slenderness $e l t=>27.62 / 225=>0.12$ $h_{\text {eff }} / t_{\text {ef }} \Rightarrow 0.85 .2450 / 225 \Rightarrow 9.25$ $B \Rightarrow 0.84$ $\mathrm{f}_{\mathrm{m}}=>300 / 1 \mathrm{~m} \cdot 225 \mathrm{~mm} \Rightarrow 1.33 \mathrm{~N} / \mathrm{mm}^{2}$ $\mathrm{f}_{\mathrm{all}}=7.4 \mathrm{~N} / \mathrm{mm}^{2} \times 0.84 / 3=2.07 \mathrm{~N} / \mathrm{mm}^{2}$ Total loading on Party Wall :- Garage L.L $2.5 \mathrm{kN} / \mathrm{m}^{2}$ Garage Floor Loading $10 \mathrm{kN} / \mathrm{m}^{2}+(1.5) 1.6=>12.4 \mathrm{kN} / \mathrm{m}^{2}$ $\Sigma \mathrm{N}=300 \mathrm{kN} / \mathrm{m}+12.4 \mathrm{kN} / \mathrm{m}^{2} .3 \mathrm{~m}$ $+(1.35 \mathrm{kN} / \mathrm{m} / \mathrm{fil} .20 \mathrm{crs}) 1.4=>375 \mathrm{kN} / \mathrm{m}$ $f_{\mathrm{m}} \Rightarrow 375 / 1 \mathrm{~m} .225 \mathrm{~mm} \Rightarrow 1.66 \mathrm{~N} / \mathrm{mm}^{2}$ * note that this party-wall is loaded from one side only	

STABILITY

FIG 1
THE EXTENT OF DAMAGE SHOULD NOT BE DISPROPORTIONATE TO ITS CAUSE

BS 5628 specifies the minimum lateral load at 1.5% of the total characteristic DL above that level.
EC6 gives this at $\mathbf{1 \%}$ of the combined vertical characteristic dead and imposed load at the particular floor divided by $\sqrt{ } h$ tot
Their effect may be ignored if less onerous than other horizontal actions eg. wind

ACCIDENTAL DAMAGE

For buildings with 5 storeys or more \& clear spans exceeding 9.00 m :
BS 5628 pt 1 - Table 12-3 options given:

* option 1 based on members being able to withstand a pressure of $34 \mathrm{KN} / \mathrm{m}^{2}$ in any direction
option 3 prescribes horizontal \& vertical ties as in BS 8110
option 2 is a hybrid between options $1 \& 3$ where in masonry construction it may be difficult to provide vertical tying. Unless member defined as protected (can withstand pressure up to $34 \mathrm{KN} / \mathrm{m}^{2}$) the effect of removing one vertical member at a time is to be considered.

TIEING PROVISIONS TO BS5628 pt 1

* Vertical Tie the greater of :
$T=(34 A / 8000)(h / t)^{2} N$ or $100 \mathrm{KN} / \mathrm{m}$ length where A is the area in mm^{2}
* Horizontal Tile - in KN, is the lesser of:
$\mathrm{F}_{\mathrm{t}}=20+4 \mathrm{~N}_{\mathrm{s}}$ (where N_{s} is the no of storeys) or 60 KN
* Internal Ties in KN/m

$$
\mathrm{f}_{\mathrm{t}}^{\prime}=\mathrm{F}_{\mathrm{t}}\left\{\left(\mathrm{G}_{\mathrm{k}}+\mathrm{Q}_{\mathrm{k}}\right) / 7.5\right\} \mathrm{X} \mathrm{~L}_{\mathrm{a}} / 5
$$

* External Wall or Column Tie in KN for columns \& KN / m for walls is the lesser of $2 F_{t}$ or (L/2.5) F_{t}
The tie force is based on shear strength or friction

ROBUSTNESS - Defined in EN 1991.1.7

"The ability of a structure to withstand events like fire, explosions, impact or the consequences of human error without being damaged to an extend disproportionate to the original cause".
Regardless of their height all buildings to be compliant with "Disproportionate Collapse". This removes the 5 -storey limit.

	Project ${ }^{\text {Tas-Sellum Apartment Blk. }}$	Job ref:
	Part of Stucture	Sheet No.
[Detailing for stability	PO 10/1
BICC	Orawing ref: Done by: DHC Chkd By:	Date
¢		03/05
Ref:	Calculations	Output
	VERTICAL TIE REINFORCEMENT	
	$170 \mathrm{kN} / \mathrm{m} / 460 \mathrm{~N} / \mathrm{mm}^{2} \Rightarrow 369 \mathrm{~mm}^{2} / \mathrm{m}$ (1Y-25/ plank)	
	PERIPHERAL TIE REINFORCEMENT - F_{t}	
	$44 \mathrm{kN} / 460 \mathrm{~N} / \mathrm{mm}^{2}=>95 \mathrm{~mm}^{2}$ ($1 \mathrm{Y}-12 \mathrm{~mm}$)	
	INTERNAL TIE REINFORCEMENT	
	$F_{t}^{\prime}=F_{t}\left(g_{k}+q_{1}\right)\left(7.5 \times L_{A} / 5 \mathrm{kN} / \mathrm{m}\right.$	
	$\Rightarrow 44(5.4+2.0) / 7.5 \times 6 / 5=>52 \mathrm{kN} / \mathrm{m}$	
	$A_{\mathrm{s}}=552 \mathrm{kN} / \mathrm{m} / 460 \mathrm{~N} / \mathrm{mm}^{2} \Rightarrow 113 \mathrm{~mm}^{2} / \mathrm{m}$ ($1 \mathrm{Y}-16 \mathrm{~mm} /$ plank)	
	EXTERNAL WALL TIE	
	Tie Force $=>2 \mathrm{~F}_{\mathrm{t}}=>88 \mathrm{kN} / \mathrm{m}$ or	
	$(\mathrm{h} / 2.5) \mathrm{F}_{\mathrm{t}}=>(3 / 25) 44=>53 \mathrm{kN} / \mathrm{m}$ (lesser of)	
	$\mathrm{fv}_{\mathrm{v}}=>0.15+0.6 \mathrm{~g}_{\mathrm{a}}$ for grade IV mortar at the upper level	
	$\mathrm{g}_{\mathrm{a}}=>50 \mathrm{kN} / \mathrm{m} / 1 \mathrm{~m} .0225 \mathrm{~m}=>0.22 \mathrm{~N} / \mathrm{mm}^{2}$	
	$\mathrm{f}_{\mathrm{v}}=>0.15+0.6 \times 0.22 \Rightarrow 0.282 \mathrm{~N} / \mathrm{mm}^{2}$	
	Combined stear resistance on both surfaces	
	=> $2\left(\underline{0.282 \times 225 m m) ~}{ }^{\text {a }}\right.$ (${ }^{\text {a }} 101.5 \mathrm{kN} / \mathrm{m}$	
	1.25	
	> $53 \mathrm{kN} / \mathrm{m}$ no steel ties required	

